Окончательная форма, которую принимает молекула белка (ее конформация , как говорят биологи), отражает равновесное расположение ее электрических зарядов. Но если распределение положительных и отрицательных зарядов молекулы изменится, то основа белка тут же начнет изгибаться и приспосабливаться к новой ситуации. Распределение зарядов в белковой молекуле может быть избирательно изменено целым рядом процессов, в частности присоединением других химических веществ (например, гормонов), воздействием ферментов или присоединением ионов и даже воздействием внешних электромагнитных полей – например, тех, что излучаются мобильными телефонами.
Трансформирующиеся белки представляют собой пример еще более впечатляющего конструктивного совершенства, так как их точнейшим образом выверенная трехмерная конфигурация дает им возможность связываться с другими белками. Когда молекула белка встречается с другой физически и энергетически комплементарной белковой молекулой, они соединяются друг с другом примерно так же, как детали обычных механизмов – например, шестеренки в часах.
Разнообразие белков. На рисунке показаны пять различных белковых молекул. Каждой из них свойственна строго определенная трехмерная конфигурация, в точности воспроизводящаяся от клетки к клетке: A – фермент, способствующий усвоению атомов водорода; B – скрученная нить белка коллагена; C – мембранный канал – белок со сквозным отверстием в центре; D – белковая субъединица «капсулы», содержащей вирус; E – ДНК-синтезирующий фермент с прикрепленной спиральной молекулой ДНК.
Рассмотрим еще две иллюстрации. На первой (стр. 74) показаны пять белковых молекул уникальной формы – своего рода молекулярные «шестеренки» клеток. Эти органические «шестеренки» имеют более мягкие края, чем их механические аналоги, но благодаря своей точно выдержанной трехмерной конфигурации они могут надежно сцепляться с другими, комплементарными им белковыми молекулами.
На второй иллюстрации (перед вами) функционирование клетки демонстрируется на примере механических часов. Вверху показан металлический механизм с его шестеренками, пружинами, камнями и корпусом. Поворачиваясь, шестеренка А заставляет поворачиваться шестеренку B , шестеренка В – шестеренку С и так далее.
На следующем рисунке (среднем на стр. 75) на изображение рукотворного механизма для наглядности наложено изображение белковых молекул, увеличенное в миллионы раз. В такой белково-металлической «машине» легко представить себе, как белок 1, поворачиваясь, заставляет вращаться белок 2, а тот, в свою очередь, белок 3.
Осмыслив такую возможность, переведите теперь взгляд на третий рисунок (нижний на стр. 75), где уже нет никаких рукотворных деталей. Прошу! Перед вами – белковая «машина», один из тысяч возможных белковых агрегатов, входящих в состав живой клетки!
Белки цитоплазмы, благодаря совместному действию которых осуществляются различные физиологические функции, группируются в особые агрегаты, называемые каскадами , или биохимическими путями. Эти агрегаты классифицируются по их функциям – например дыхательные каскады, пищеварительные каскады, каскады мышечных сокращений и печально известный энергопроизводящий цикл Кребса – это подлинное бедствие для некоторых студентов, которым приходится запоминать все фигурирующие в нем белковые компоненты и сложные химические реакции.
Можете ли вы себе представить, в какой восторг пришли биологи, когда разобрались в работе белковых машин? В клетке эти механизмы используются для осуществления различных метаболических и поведенческих функций. Периодические движения меняющих свою форму белков, повторяющиеся с частотой нескольких тысяч раз в секунду, – вот что движет жизнью.
Вы, вероятно, заметили, что в предыдущем параграфе я ни слова не сказал о ДНК. Это объясняется тем, что движение, которое обусловливает различные формы жизнедеятельности, порождает отнюдь не ДНК, а изменение электрической заряженности белков. Откуда же взялось это широко распространенное и часто озвучиваемое представление о том, что гены «управляют» всем живым? Дарвин в «Происхождении видов» предположил, что «наследственные» факторы передаются из поколения в поколение, тем самым определяя разнообразные признаки у потомков. Авторитет Дарвина был настолько велик, что ученые, забыв обо всем, бросили все свои силы на поиск этой самой «управляющей» наследственной материи.
Читать дальше
Конец ознакомительного отрывка
Купить книгу