Но в определенном смысле всякий обращенный на минеральный мир познавательный процесс обнаруживает ту же внутреннюю структуру, что и обращенный на кристалл, поскольку предметы этого познавательного процесса лежат в видимом мире, и причины всевозможных изменений в этой области восприятия могут быть найдены в видимом мире. Так, например, если рассматривать движение нескольких шаров на бильярдном столе, то отдельные элементы этого явления будут полностью обозримы и постижимы в математических понятиях.
Если мы от кристалла перейдем к макрокосмосу, то в законах Кеплера мы в большом имеем тот же идеальный случай для познания, который в малом представляет кристалл. Кеплер даже сам проделал этот путь, когда он сначала пытался отношения между планетами выразить посредством Платоновых тел; и только постепенно из этого «статического мышления» развилось «динамическое мышление», выразившееся в «законах Кеплера».
Кристалл и Космос - микрокосмически и макрокосмически - это крайние идеальные случаи наших направленных на минеральный мир познавательных стремлений. Между ними находятся тысячи случаев повседневной жизни, при которых мы, может быть, практически не достигаем такой ясности, но которые в принципе имеют ту же самую мыслительную структуру: все взаимно обусловленные и взаимно изменяемые объекты находятся в чувственном мире, и мы не нуждаемся для их объяснения в других элементах. Например, когда мы преобразуем одни формы энергии в другие: движение в электричество, а электричество в свет, в тепло, или снова в движение. Во всех этих случаях научной, технической и практической жизни справедлива предпосылка нашего мышления, что при одинаковых химических или физических условиях проявятся одинаковые явления или, другими словами, причина и действие находятся в постоянных отношениях друг к другу. Мы с нашим мышлением находимся как бы в одной плоскости, которую мы просматриваем шаг за шагом по мере того, как наблюдаем мир физико-химических явлений и мыслительно его исследуем. Для развившегося в последние столетия естествознания характерно именно применение математического мышления к явлениям природы. Его наглядность и его успехи привели к тому, что такой вид естествознания стал рассматриваться как идеал всякой науки вообще, и что этот метод попытались применить и к области жизни. Но при этом не учли, что математико-естественнонаучные методы применимы исключительно к неорганической, то есть мертвой природе; если же их применить к рассмотрению живой природы, то по понятным причинам окажется возможным познавать в жизненных процессах только то, что уже перешло в неорганическое, то есть стало мертвым. Так, например, можно провести химический или физический анализ растительного или животного организма, однако только в том случае, если удалить из организма жизнь. Тем самым химический анализ может сообщить нам нечто только о «строительных материалах», но не о «строительном плане» или существе жизненных процессов. Мы не можем, как это делали с кристаллами, развить в нашем мышлении формы живых существ: растений и животных. Только в классе одноклеточных, у радиолярий мы находим аналогии с правильными телами; но и здесь речь идет только о (изъятом из жизненного процесса, и, следовательно, мертвом) минеральном остове организма.
Но в одном отношении биология, работающая при помощи физико-химических методов, внесла вклад в изучение проблемы жизни. Она установила, что молекулы основных участвующих в жизненных процессах белков и полисахаридов являются высокомолекулярными соединениями, и что для них можно предположить лабильную тонкую структуру. Если, например, молекула гемоглобина имеет молекулярный вес около 68000, то такое сложное соединение менее стабильно, чем, например, серная кислота H 2SO 4, имеющая молекулярный вес 98. Последняя, в своей простой и стабильной конституции, при сравнении с гемоглобином кажется нам здоровым крестьянином перед сверхчувствительной нежной девушкой. Но такая лабильность высокомолекулярных белков, по видимому, является необходимой предпосылкой для проявления жизненного процесса. Химические свойства веществ должны в определенной мере взаимно сокращаться и соединение должно приходить в состояние высокой химической лабильности, чтобы могла возникнуть жизнь. [9] Так в тонких жизненных процессах при изменениях молекул лабильные побочные валентности играют исключительную роль: связывание кислорода в гемоглобине при дыхании происходит в очень свободной форме без действительного окисления железа. Химические явления в мышечном белке при сокращении мышц происходят также на основе побочных валентностей. Если вместо них вступит в силу основная валентность, то функция станет более не совместима с жизнью. Тогда вместо диссоциирующего оксигемоглобина образуется стабильный мета-гемоглобин, а белок денатурируется и полностью видоизменится. Любому белку нужна определенная среда. При малейшем ее изменении, таком, как сдвиг pH или изменении температуры, белок претерпевает существенные преобразования. - Все питательные вещества и субстанции, составляющие живую ткань, так лабильны, что, будучи предоставлены сами себе, они распадаются, как это частично происходит при старении, на составляющие их более простые элементы, в экстремальном случае доходя до Н, О, СО, и NH,.
Тем самым химия сама определила границы, до которых справедливы ее законы. По ту сторону границ лежит область жизни, которая имеет свои собственные закономерности.
Читать дальше