Но Прямая оказалась строгой линией. Сдерживает она угол, ограничивает. Теперь ему не та свобода, что прежде.
А вокруг, как назло, ломаные линии вертятся, выламываются:
— Ну как ты, Угол, со своей Прямой? Ладите?
Что им ответишь? Молчит Угол. Молчит, а сам думает: «Зря я такую прямую линию взял. Ломаные куда удобней!»
За этой мыслью пришла и другая:
«А вообще-то, чем я рискую? Можно такую ломаную найти, что она с моей прямой и не пересечется».
Такая ломаная линия быстро сыскалась. Соединил ею Угол те же две точки, что и Прямая соединяла, осторожно соединил, чтоб не получилось пересечения, и — доволен.
Потом еще одной ломаной обзавелся, потом еще одной. А Прямая верит Углу, ни о чем не догадывается.
Но вот ломаные линии, как набралось их много; стали между собой пересекаться. Так закрутили Угол, так завертели, что его среди них и не видать.
Еле выпутался бедняга.
«Хватит, — решил, — возиться с этими ломаками. Лучше уж прямой линии держаться».
И опять остался Угол со своей Прямой. Дружно живут. Хороший треугольник.
Оно и понятно: через две точки, как свидетельствует геометрия, можно провести только одну прямую.
А ломаных — сколько угодно.
Это число было настолько незначительной величиной, что стояло даже ниже Ноля, не говоря уже о других, положительных числах. Поэтому, не довольствуясь своим положением, оно все отрицало и стояло в задачнике со знаком минус.
Но теперь все изменилось. Отрицательное Число возвели в степень, и оно стало положительной величиной. Оно утверждает то, что прежде отрицало, и отрицает другие отрицательные числа — ничтожные величины, стоящие ниже Ноля.
Минус на минус дает плюс — это простая арифметика.
Скромные однозначные числа Пять и Семь познакомились, понравились друг другу и решили помножиться. И вот в результате появилось на свет их произведение — Тридцать Пять.
Носятся сомножители со своим произведением, не могут им нарадоваться.
— Смотрите, — говорят соседям, — это наше произведение. Ну, каково? Двузначное число, не то что мы, однозначные.
А произведение и не смотрит на сомножителей. Воротит нос, боится, как бы знакомые сотни чего не подумали. Как-никак сомножители — однозначные числа, стыдно произведению иметь такую родню.
— Произведение ты наше единственное, погляди на нас, хоть словечко молви!
Куда там! До того ли сейчас произведению! Произведение давно забыло, кто его произвел на свет. Теперь произведению с самой Тысячей помножиться в пору!
Прибежала Трапеция к Окружности.
— Ох, ты даже себе не можешь, не можешь представить! Сверху плоско, снизу выпукло, а о боках нечего и говорить!
— Что плоско? Что выпукло? Ты объяснишь толком?
— Вот послушай, — стала объяснять Трапеция. — Появилась у нас в учебнике новая фигура. Откуда она взялась, никто не знает. Может, ее кто нарисовал так, для смеха…
— Что же это за фигура?
— Как, ты еще не поняла? Ну пошли, сама посмотришь.
Пошли они смотреть на Фигуру. А там уже, такое творится! Треугольники, Квадраты, Параллелограммы… А в центре эта самая Фигура красуется…
При виде ее Окружность так и покатилась со смеху, но не успела откатиться особенно далеко — остановилась, призадумалась.
— Ты знаешь, — сказала она Трапеции, — в ней что-то есть. Вот эта линия, обрати внимание. Она выглядит вполне Современно.
— Пожалуй, — согласилась Трапеция. — А поверхность? Видишь, какая у нее поверхность? У нас все слишком плоско…
— Да, мы привыкли к симметрии, — вздохнула Окружность. — А кому теперь нужна симметрия?
Подоспели и другие геометрические фигуры. Они с восхищением глядели на незнакомую Фигуру и в один голос вздыхали:
— Как это асимметрично!
И вот — Фигуры давно уже нет, а поглядите, что делается в учебнике. Ни одной геометрической фигуры невозможно узнать.
Все они на одно лицо: сверху плоско, снизу выпукло, а о боках нечего и говорить.
Мода, ничего не поделаешь.
Закон моды!
Вопреки всем известным законам геометрии.
Читать дальше