Непонятно, как нам удается, но, используя этот диковинный метод — медитация плюс ориентация по компасу (ни того, ни другого я лично не делаю, но могу дать независимое свидетельство: почти все остальные делают) — мы в конце концов и вправду оказываемся на берегу реки Миви; на часах — самое начало третьего. Видим знак, подтверждающий, что речь шла именно об этой реке, дружно аплодируем и кричим «ура». И, идя вдоль течения, готовые попытаться «увидеть» пресловутого пшеничного зайца, натыкаемся на паб, куда дружно заваливаемся, запыхавшиеся и голодные. Я съедаю пиалу супа и выпиваю «Кровавую Мэри», но моя простуда зашла слишком далеко. Спасения не будет. После трапезы силы совсем меня покидают. В пабе топят камин, отчего воздух жаркий и вязкий, словно сироп. На стенах — всякая жуть вроде набитых опилками оленьих голов и фотографий со сценами охоты. Они истекают кровью в небытие, когда я закрываю глаза, прижимаюсь виском к столу и всему на свете говорю «прощай».
— Я отвезу ее обратно, — слышу я голос Бена. — Ей нехорошо.
Потом — нежные руки, прохладный воздух и автомобильный мотор. Наконец, хруст гравия подтверждает, что мы вернулись домой.
Параллельно с работой над факторизацией я читаю книгу, одолженную мне бабушкой, о Курте Гёделе. Судя по всему, давным-давно дедушка был просто одержим его теориями. И вполне понятно, почему. С тем же суровым анархизмом в душе, к какому склонен дедушка, Гёдель задался целью продемонстрировать, что ни одну математическую теорему нельзя доказать исчерпывающим образом — не потому, что математика противоречива, а потому, что ей никогда не стать полностью безупречной.
В 1900 году немецкий математик Давид Гильберт дал знаменитую лекцию: он огласил двадцать три математические проблемы, которые, по его убеждению, должны стать ключевыми задачами нового столетия. Первой проблемой была «гипотеза континуума» — теория, согласно которой между алефом-нуль и алефом-один нет никакой другой бесконечности; нет промежуточного звена между Канторовыми понятиями счетного множества и несчетного множества («континуума»). Гипотеза Римана была восьмой в списке. Но Гильберт также потребовал, чтобы сами принципы и основания математики — ее аксиомы — были раз и навсегда приведены в порядок. Это была проблема номер два. Общественность тогда уже забеспокоилась: в самом ли деле непротиворечива закрытая система математики? и верны ли ее аксиомы? Если бы она содержала внутренние противоречия, тогда все доказательства всех теорем, известных к тому времени, не стоили бы ровным счетом ничего (это при условии, что хоть кто-то знал, что же такое «ничего»). Что, если, к примеру, гипотеза Римана истинна и в то же время ложна? Если 1 + 1 = 2 и одновременно 1 + 1 = 3? Такое никуда не годится.
Аксиомы — основы основ математики. Аксиомы — это утверждения, которые не могут быть доказаны, однако образуют базис для всех математических доказательств, а те, в свою очередь, являются логическими свидетельствами того факта, что нечто всегда будет обстоять строго определенным образом. Евклид, например, сформулировал доказательство, что простых чисел бесконечно много, а Кантор «сузил» эту бесконечность до алефа-нуль, или א 0. Доказательство теоремы Пифагора (а теперь я знаю, что это за штука, потому что она есть в моей книжке: она гласит, что квадрат гипотенузы прямоугольного треугольника всегда равен сумме квадратов двух других сторон) основано не на том, что кто-то рассматривает тьму-тьмущую прямоугольных треугольников, измеряет длины сторон и говорит: «Опаньки, кажется, тута все в порядке». Доказательство, элегантное и простое, объяснит, почему так будет всегда, до скончания вечности, для всех прямоугольных треугольников. У теоремы Пифагора много разных доказательств.
Аксиомы — то, на чем строятся доказательства, вроде утверждения «1 + 1 = 2», — иногда называют «самоочевидными»; другие «аксиомы» оказались теоремами и были доказаны. Две точки всегда можно соединить прямой линией. Все прямые углы равны между собой. Все целые составные числа являются произведением меньших простых. Это — аксиомы. Они слегка похожи на отправные точки путешествия. Выходишь из одного пункта, и, следуя указаниям, прибываешь в другой. Однако нужно знать, откуда именно стартуешь, прежде чем сможешь получить или использовать указания. Если получишь правильные указания, но пойдешь не оттуда, откуда надо, в конце концов окажешься в каком-нибудь совершенно неожиданном месте. Доказательство, сформулированное с помощью ложных аксиом, заведет в тупик.
Читать дальше