М. Б.: В случае моей встречи, даже если бы я смог определить, зафиксировать точку, укоренить в ней дерево, — значение вероятности, которое я в итоге получу, опишет такую ситуацию, как если бы я в этой точке задался вопросом, какие у меня шансы столкнуться с тем-то тогда-то и там-то. То есть все будто по второму разу проигрывается. И эта вероятность справедливо мала.
В. Г.: Верно, мала. Но это совсем другая история. Если бы ты задался вопросом: «А встречу ли я эту именно женщину сегодня еще раз?», вероятность этой второй встречи в момент первой была очень невелика, потому что в этом случае из множества возможных «вторых» встреч ты бы выбрал аккуратное подмножество ровно из одной.
М. Б.: Но мне представляется, тут большое отличие от настоящего положения дел.
Поставив себе целью в течение, скажем, года, не подгадывая место и время, наскочить на Вову Губайловского в метро — поставив своего рода вероятностную задачу, — можно быть уверенным, что, в полном соответствии с предварительным расчетом, этого не случится. Стоит о Вове забыть — и вот он, пожалуйста.
В. Г.: У Кортасара есть рассказ, который имеет к нашему разговору о случайных встречах самое непосредственное отношение. Юноша дает себе зарок, что он женится только на той девушке, которую он встретит в метро и которая сойдет на той же станции, что и он. Но он встречает девушку совсем не в метро и влюбляется в нее, она тоже его любит. Юноша рассказывает ей о своей клятве. Тогда влюбленные начинают целыми сутками ездить в метро. Рассказ заканчивается тем, что они сидят в вагоне друг напротив друга и не знают, до одной ли станции они сейчас едут. Какова вероятность того, что влюбленные все-таки будут счастливы? На первый взгляд она ничтожно мала. Но только на первый. По уговору они должны выбрать маршрут до того, как войдут в метро, но больше никаких ограничений нет. Встретившись в первый раз, они почти наверняка разминутся, но также наверняка они поедут снова по той же линии в то же время. Один из них, тот, кто вышел позднее, будет после первой встречи точно знать, где сошел другой, и тому просто достаточно будет повторить свой маршрут. Может быть, им что-то помешает встретиться во второй раз в том же месте, но их маршруты будут неизбежно и очень быстро сближаться, то есть их поиск приобретет не случайный, а кумулятивный характер, и это обязательно произойдет, потому что они знают конечную, телеологическую причину своих случайных блужданий. Поставив перед собой задачу встретить кого-то в метро, ты сразу резко повысишь вероятность этой встречи за счет того, в частности, что при непрерывном сканировании лиц, скользящих мимо тебя в толпе, лицо искомого человека будет проверяться на сходство первым, тебя будет «раз сто в теченье дня <...> на сходствах ловить улица» (Пастернак), ты будешь ошибаться, но если встретишь того, кого ищешь, он не пройдет мимо тебя незамеченным.
М. Б.: Имеем ли мы вообще право говорить на вероятностном языке о событиях неожиданных и произошедших единожды?
В. Г.: Ты уже говоришь об этих событиях на вероятностном языке. Неожиданный — это, другими словами, маловероятный, по сравнению с более вероятным — ожидаемым. О событиях, произошедших однажды, естественно, вероятность ничего сказать не может, поскольку, по определению, имеет дело не с единичными событиями, а с ансамблями. Теория вероятностей, как и всякая другая математическая дисциплина, идеализирует, огрубляет действительность, и здесь, видимо, следует начать говорить о событиях маловероятных, но имеющих очень серьезные последствия, — о точках бифуркации, о распределениях существенно отличных от Гауссова, о неравновесной термодинамике, о синергетике. Но есть и другой момент — событие может только казаться «произошедшим единожды», на самом деле это событие может быть всего лишь одним из элементов некоторого вероятностного пространства. Например, пространства всех кратных случайных встреч в городе Москве. Ты же говоришь: «Собственно, обыденное это событие или исключительное? Обыденное. Как встреча знакомого в метро. Что-то подобное происходит с нами каждый день». В этом пространстве и происходит случайное событие, которое мы обсуждаем. И тогда можно очень многое посчитать, и как это примерно можно делать, учитывая вероятностные распределения, описывающие траектории горожан, мы уже обсуждали.
Читать дальше