Роль микросаккад до конца невыяснена, но предполагают, что они нужны для компенсации смещения глаза из-за дрейфа и для поддержания изображения на сетчатке в движении (благодаря микросаккадам нейроны поддерживаются в активном состоянии из-за того, что неподвижные детали картинки перемещаются по их рецептивным полям, подробнее см. в следующем параграфе). Как показали эксперименты, если бы не было мелких движений глаз, мы бы видели только движущиеся предметы (как, например, видят лягушки). В этом случае при просмотре неподвижной сцены после начала каждой фиксации взгляда примерно через несколько секунд изображение бы полностью исчезало, а после перевода взгляда на другую точку новая картинка снова бы появлялась на несколько секунд.
Продолжительность фиксации взгляда примерно равна одной четверти секунды, но может быть разной, в зависимости от того, сколько времени нужно мозгу для завершения анализа соответствующей мгновенной картинки («кадра»). Интересно, что эти времена приблизительно кратны одной четверти секунды. Возможно, четверть секунды – это как раз именно то время, которое необходимо для выполнения алгоритма обработки глазом и мозгом одного «кадра». Поскольку во время выполнения саккадического прыжка информация от рецепторов сетчатки в мозг не передается, то нейроны мозга для обработки предыдущего «кадра» имеют дополнительное время. Еще один источник дополнительного времени – мигание.
1.2. Обработка зрительного сигнала рецепторами сетчатки
Свет, попадающий в глаз, проходит сквозь роговицу и хрусталик. Роговица и хрусталик играют роль двухлинзового объектива, причем линза-хрусталик имеет изменяемую кривизну и неравномерный коэффициент преломления, максимальный в центре и минимальный на периферии. Преломление света в роговице больше, чем в хрусталике, потому что коэффициенты преломления воздуха и роговицы различаются сильнее, чем коэффициенты преломления роговицы и хрусталика.
Изображение, сфокусированное роговицей и хрусталиком, попадает на сетчатку. Сетчатказанимает примерно две трети внутренней поверхности глазного яблока, а ее толщина – около 0.3 мм. Изображение на сетчатке глаза воспринимается рецепторами: палочками и тремя видами колбочек: L-колбочки, M-колбочки, S-колбочки (от Long, Middle, Short wavelength). В сетчатке одного глаза находится до 125 миллионов палочек и до 7 миллионов колбочек (распределение по типам L: M:S – 32:16:1). Размер наружной части рецептора, содержащей светочувствительный пигмент, равен 1 ÷ 2 микрон для палочки или 1 ÷ 5 микрон для колбочки.
Плотность рецепторов в центральной части сетчатки: 60000–150000 на мм 2. Чувствительность: 5–14 фотонов для палочки и в 100–1000 раз больше для колбочки.
Максимум спектральной чувствительности палочек – 510 нм. Три вида колбочек имеют максимумы спектральной чувствительности 570 нм. (L), 544 нм. (M) и 443 нм. (S), то есть, приблизительно в области красных, зеленых и синих цветов.
Под слоем рецепторов находится слой клеток, содержащий черный пигмент меланин, поглощающий прошедший сквозь слои сетчатки и уже не нужный свет. Кроме того, эти клетки играют важную роль в процессе восстановления обесцвеченного светочувствительного пигмента палочек и колбочек.
Интересно, что у животных, ведущих ночной образ жизни, этот слой клеток, наоборот, имеет высокий коэффициент отражения, что повышает чувствительность сетчатки к свету (отраженный свет снова проходит через слой рецепторов в обратном направлении), но, разумеется, за счет ухудшения качества изображения. Именно поэтому глаза таких животных светятся в темноте (отраженным светом, конечно).
Под действием света в палочках обесцвечивается пигмент родопсин (зрительный пурпур), а в колбочках – пигмент йодопсин (точнее, хлоролаб, эритролаб, цианолаб в зависимости от вида колбочки). Причем количество прореагировавшего пигмента зависит от яркости приблизительно логарифмически (закон Вебера – Фехнера), или, точнее, как степенная функция (закон Стивенса).
Пигмент находится в элементах рецепторов, называемых дисками для палочек и полудисками для колбочек. В каждом рецепторе таких (полу)дисков около тысячи. Диски и полудиски с обесцветившимся пигментом рассасываются, и в рецепторе возникают новые с восстановленным пигментом. Полная замена дисков и полудисков одного рецептора осуществляется примерно за 10 дней. Интересно, что обновление колбочек происходит после захода солнца, а палочек – на восходе.
Читать дальше