Но какой бы успешной и масштабной ни была общая теория относительности, она не подготовила Эйнштейна в середине 1920-х гг. к главной схватке его жизни – работе над единой теорией поля, которая объединила бы законы физики, и одновременному сражению с «демоном» квантовой теории.
Часть III
Незавершенная картина
Единая теория поля
Глава 7
Обобщение и квантовый вызов
В 1905 г., почти сразу после того, как была завершена работа над специальной теорией относительности, Эйнштейн начал терять к ней интерес, поскольку впереди в прицеле уже замаячила новая, более крупная дичь: общая теория относительности. В 1915 г. история повторилась. Сформулировав теорию гравитации, Эйнштейн почти сразу переключился на еще более грандиозный проект: единую теорию поля, которая объединила бы его теорию гравитации с максвелловской теорией электромагнетизма. Предполагалось, что эта работа станет не только вершиной его творчества, но и итогом двух тысячелетий научного исследования природы гравитации и света. Эта теория должна была дать Эйнштейну способность «читать мысли Бога».
Эйнштейн не был первым, кто предположил существование связи между электромагнетизмом и гравитацией. Самые ранние эксперименты по исследованию взаимоотношений между этими двумя вездесущими силами провел Майкл Фарадей, работавший в лондонском Королевском институте в XIX в. Он бросал магниты вниз с Лондонского моста и смотрел, отличается ли скорость их падения от скорости падения обычных камней. Если магнетизм взаимодействует с гравитацией, то, может быть, магнитное поле противодействует тяготению и магниты падают с другой скоростью. Кроме того, он бросал куски металла из-под потолка лекционного зала на пол на специальную подушку, пытаясь понять, индуцируется ли при падении в металле электрический ток. Все эксперименты Фарадея дали отрицательный результат. Однако он отмечал: «Они не поколебали моей прочной убежденности в существовании некоей связи между гравитацией и электричеством, хотя и не дали доказательств того, что такая связь существует». Риман, основатель теории искривленного пространства любой размерности, был убежден, что и гравитация, и электромагнетизм могут быть сведены к чисто геометрическим доказательствам. К сожалению, он не обладал какой бы то ни было физической картиной уравнений поля, поэтому его идеи ни к чему не привели.
Эйнштейн как-то привел интересную метафору, сравнив мрамор и дерево. Мрамор, по его мнению, символизировал прекрасный мир геометрии, где поверхности изгибаются гладко и непрерывно. Звезды и галактики, населяющие Вселенную, вели свою космическую игру на чудесном мраморе пространства-времени. Дерево символизировало хаотический мир материи с путаницей элементарных частиц и абсурдными, с точки зрения здравого смысла, квантовыми правилами. Дерево, примером которого могут служить узловатые ползучие лианы, растет непредсказуемым и случайным образом. Новые элементарные частицы, которые то и дело открывали в атоме, делали теорию вещества поистине безобразной. Эйнштейн видел недостаток своих уравнений. Главной ошибкой было то, что структуру мрамора определяло дерево. Степень искривленности пространства-времени определялась количеством дерева в каждой точке.
Таким образом, Эйнштейн видел перед собой ясную стратегию: создать теорию чистого мрамора, исключить дерево, переформулировав все законы исключительно в терминах мрамора. Если бы удалось показать, что само дерево состоит из мрамора, то на свет появилась бы чисто геометрическая теория. К примеру, точечная частица бесконечно мала и не имеет пространственной протяженности. В теории поля точечная частица представлена «сингулярностью» – точкой, где напряженность поля стремится к бесконечности. Эйнштейн хотел заменить эту сингулярность гладкой деформацией пространства и времени. Представьте изгиб на веревке. С некоторого расстояния он может выглядеть как частица, но при ближайшем рассмотрении выясняется, что это всего лишь сильная кривизна веревки. Так же и Эйнштейн хотел построить теорию, которая была бы чисто геометрической и не имела вообще никаких сингулярностей. Элементарные частицы, такие как электрон, выглядели бы в ней как узелки или небольшие морщинки на поверхности пространства-времени. Фундаментальной проблемой такого подхода, однако, было то, что у него не было какой-то конкретной симметрии или принципа, которые могли бы объединить электромагнетизм и гравитацию. Как мы уже говорили, ключевым методом Эйнштейна было объединение через симметрию. При работе со специальной теорией относительности у него была картина, на которую он все время ориентировался, – полет рядом со световым лучом. Эта картина помогла выявить фундаментальное противоречие между механикой Ньютона и полями Максвелла. Отсюда Эйнштейн сумел извлечь принцип постоянства скорости света. Наконец, он сумел сформулировать симметрию, объединяющую пространство и время, – преобразования Лоренца.
Читать дальше
Конец ознакомительного отрывка
Купить книгу