В 1909 году, выступая в Зальцбурге, Эйнштейн предсказывал, что физике предстоит примириться с дуальностью, то есть с тем, что свет можно считать и волной, и частицей. И на первом Сольвеевском конгрессе в 1911 году он решительно утверждал, что “эти нарушения непрерывности, которые нам так не нравятся в теории Планка, по-видимому, на самом деле должны существовать в природе” 28.
По этой причине Планк, не готовый признать физическую реальность введенных им квантов, написал об Эйнштейне в рекомендательном письме для избрания в Прусскую академию: “Возможно, высказав гипотезу о квантах света, он зашел слишком далеко”. Другие ученые тоже поддержали Планка в неприятии квантов Эйнштейна. Вальтер Нернст назвал эту идею “вероятно, самым странным, о чем он когда-либо слышал”, а Роберт Милликен – “полностью несостоятельной” – даже после того, как сам в своей лаборатории проверил точность предсказаний теории Эйнштейна 29.
Новый этап квантовой революции начался в 1913 году, когда Нильс Бор предложил свою исправленную модель атома. Бор, блестящий, но застенчивый и невразумительно выражавшийся молодой датчанин, был шестью годами моложе Эйнштейна. Он был знаком как с немецкими работами по квантовой теории Планка и Эйнштейна, так и с работами по структуре атомов англичан Дж. Дж. Томсона и Эрнеста Резерфорда. “В то время квантовая теория была немецким изобретением, вряд ли вообще проникшим в Англию”, – вспоминал Артур Эддингтон 30.
Бор отправился учиться к Томсону в Кембридж. Но у невнятно бормочущего датчанина и неразговорчивого британца возникли трудности в общении. Поэтому Бор перебрался в Манчестер работать с более коммуникабельным Резерфордом, автором модели атома, где крошечные отрицательно заряженные электроны вращались по орбитам вокруг положительно заряженного ядра 31.
Усовершенствование, сделанное Бором, основывалось на том, что вращающиеся электроны не сваливаются на ядро, испуская излучение непрерывного спектра, как то предсказывает классическая механика. В новой модели Бора, основанием которой послужило изучение атома водорода, электрон, находясь в состояниях с дискретными энергиями, вращается вокруг ядра по определенным разрешенным орбитам. Атом может поглощать энергию излучения (такого как свет) только маленькими порциями, что приводит к перебрасыванию электрона с орбиты, на которой он находился, на другую, более высокую разрешенную орбиту. Точно так же атом может испускать излучение только порциями, что приведет к падению электрона вниз на другую разрешенную орбиту.
При переходе с одной орбиты на другую электрон совершает квантовый скачок. Другими словами, это отдельный, проходящий с нарушением непрерывности переход с одного уровня на другой без возможности отклониться и оказаться где-то между уровнями. Бору удалось показать, что его модель объясняет положение спектральных линий излучения атома водорода.
Услышав об этой теории, Эйнштейн пришел в восхищение, но он и несколько завидовал Бору. Один ученый описывал это Резерфорду так: “Он сказал мне, что однажды нечто подобное приходило и ему в голову, но он не осмелился это опубликовать”. Позднее Эйнштейн объявил, что “открытие Бора – музыка высших сфер в области мысли” 32.
Основываясь на модели Бора, Эйнштейн в 1916 году написал серию статей, наиболее существенная из которых, “К квантовой теории излучения”, вышла из печати в 1917 году 33.
Эйнштейн начал с мысленного эксперимента. Он представил себе камеру, в которой есть облако атомов, омываемых светом (или каким-либо другим электромагнитным излучением). Затем Эйнштейн комбинирует модель атома Бора с теорией квантов Макса Планка. Если каждое изменение электронной орбиты соответствует поглощению или испусканию одного кванта света, то – престо! – отсюда следует новый, более простой способ для получения формулы Планка, объясняющей закон излучения абсолютно черного тела. Эйнштейн хвастал Мишелю Бессо: “Меня осенила блестящая идея относительно поглощения и испускания излучения. Она заинтересует тебя. Удивительно простой вывод, я бы сказал, именно вывод формулы Планка. Абсолютно квантовая история” 34.
Атомы спонтанно испускают излучение. Но, предполагает Эйнштейн, этот процесс можно стимулировать. Упрощенно это можно себе представить так: предположим, что атом, поглотив фотон, уже оказался в состоянии с более высокой энергией. Если теперь его возбудить с помощью другого фотона определенной длины волны, это может привести к испусканию двух фотонов одной и той же длины волны и одинаковой поляризации.
Читать дальше
Конец ознакомительного отрывка
Купить книгу