Этап 2
На этапе 2 мы провели анализ стоимости информации, воспользовавшись макросом программы Excel (хотя для этого вполне подошел бы и график стоимости информации, приведенный на рисунке 7.2). Поскольку решение не должно было выражаться в денежных прибылях или убытках, VIA дал результаты, означавшие, по сути, уменьшение ошибки прогнозной оценки (в галлонах) дневного потребления топлива. Оказалось, что наиболее высока стоимость информации об особенностях маршрутов транспортных колонн, в том числе сведений о расстояниях и дорожных условиях. Высокой оказалась и стоимость информации о влиянии военных операций на потребление топлива боевыми машинами. Мы придумали способы измерить и то, и другое.
Чтобы снизить неопределенность в потреблении топлива при боевых операциях, была выбрана модель линзы, построенная на основе оценок офицеров-логистиков Первой дивизии морской пехоты. В основном это были батальонные штабные офицеры и некоторые командиры подразделений, все с опытом боевых действий в иракской операции. Они назвали несколько факторов, от которых, по их мнению, зависит потребление топлива боевой техникой, и в том числе вероятность соприкосновения с противником (как это называется в планах проведения операций), знание местности, характер местности (город или пустыня) и т. п. Я провел со всеми офицерами тренинг по калибровке, затем составил список из 40 гипотетических сценариев боевых действий и предоставил им информацию о каждом из названных факторов. Для каждого сценария они указали 90-процентный CI величины расхода горючего теми видами боевой техники, которыми командовали (танками, легкими бронемашинами и др.). Собрав ответы, я пропустил через Excel регрессионную модель и получил формулу расчета потребления топлива каждым видом техники.
Чтобы уточнить переменные транспортной модели, характеризующие дорожные условия, мы решили провести ряд экспериментов на военной базе Twenty-Nine Palms (штат Калифорния). Другие подрядчики, участвующие в проекте, обеспечили нас GPS-навигаторами и счетчиками топлива, которые было решено установить на топливопроводах грузовиков. До этого эксперимента никто из команды не знал о существовании таких счетчиков. Я просто сказал этим консультантам: «Кто-то же постоянно этим занимается. Давайте проявим изобретательность и выясним, кто это делает и как». Незамедлительно по Интернету был найден поставщик цифровых счетчиков топлива, а его представители научили нас ими пользоваться. Они же придумали, как использовать получаемые данные в электронной таблице и синхронизировать работу GPS-навигаторов и счетчиков топлива. На проведение дорожных испытаний и расчеты с помощью модели линзы, включая установку и доработку программы Excel, у трех человек ушло несколько недель с учетом времени на дорогу.
Навигаторы GPS и счетчики топлива были установлены на трех грузовиках двух моделей. Сначала мы опасались, что нужна более крупная выборка, но, вспомнив о принципе инкрементальности измерения, решили: просто посмотрим сначала, какой окажется дисперсия у этих грузовиков — ведь два из них в любом случае были одной модели. Навигаторы GPS и счетчики топлива фиксировали местонахождение грузовика и потребление топлива каждую секунду. Пока грузовик находился в движении, эта информация постоянно передавалась на встроенный портативный компьютер. Испытания проводились в разных условиях: на асфальтированных дорогах, пересеченной местности, на разной высоте над уровнем моря (участки базы располагались на разной высоте), на ровных и бугристых дорогах, скоростных автомагистралях и т. д. К тому времени, как мы закончили, у нас была таблица данных о расходе горючего в разных условиях, состоящая из 500 тыс. строк.
Мы пропустили полученные данные через очень большую регрессионную модель. Строк оказалось намного больше, чем могла обработать программа Excel 2003, но такая подробная информация нам и не требовалась. Мы объединили эти данные в блоки по шесть секунд и провели отдельный регрессионный анализ уже переформатированной таким образом информации для испытаний в разных условиях.
По окончании измерений мы обнаружили удивительные вещи. Прежде всего, основной причиной неточности прогнозов потребления топлива оказался недоучет качества дорог и некоторых других особенностей маршрута. Более того, большинство этих параметров (все, кроме температуры воздуха) обычно известны заранее, поскольку военные располагают подробной картой поля боя, сделанной спутниками и беспилотными самолетами-шпионами. Поэтому неопределенность, связанная с дорожными условиями, — ошибка, которой вполне можно избежать. В таблице 14.1 суммированы ошибки прогнозов из-за недоучета других конкретных факторов.
Читать дальше