Управление на основе данных подразумевает формирование инструментов, способностей и, что самое важное, корпоративной культуры , которая опирается на данные. В этой главе мы рассмотрим, что отличает компанию с управлением на основе данных. Начнем с базовых требований к их сбору и доступности. Затем остановимся подробнее на весьма важном отличии — подготовке отчетов и получении оповещений в противовес процессу анализа. Существует много различных типов перспективного анализа, отличающихся по степени сложности. Мы уделим некоторое время изучению этих типов с точки зрения их «уровня аналитики» и «аналитической зрелости», а также обсудим основные признаки «аналитически зрелой» организации. Какой она должна быть?
Начнем с ответа на первый вопрос: что означает для компании управление на основе данных?
Давайте сразу озвучим несколько очевидных требований.
Требование № 1:в компании должен осуществляться сбор данных.
Несомненно, данные — ключевой компонент. При этом речь идет не о любых данных, а о правильных . Необходимо, чтобы набор данных соответствовал вопросу, который требуется решить. Помимо этого, данные должны быть своевременными, точными, чистыми, объективными, и, что важнее всего, они должны заслуживать доверия.
Это не так-то просто. Данные никогда не бывают настолько чистыми, как вам кажется. Они могут быть предвзятыми, что может повлиять на результат анализа, а очистка данных может стать трудоемким и дорогим процессом, требующим времени. Часто приходится слышать, что специалисты по работе с данными до 80 % времени тратят на их сбор, очистку и подготовку и только 20 % — на построение моделей, процесс анализа, визуализацию и формулировку заключений на основе этих данных [5] См., например: http://bit.ly/nyt-janitor и http://bit.ly/im-data-sci .
. Как показывает опыт, это вполне вероятно.
В следующей главе мы поговорим о качестве данных подробнее.
Даже если у вас есть действительно качественные данные и даже если у вас много качественных данных, это означает только то, что вы обладаете этими данными, но не то, что в вашей компании действует управление на основе данных. Некоторые люди, особенно специалисты организаций, предоставляющих услуги по работе с большими данными, называют большие данные практически панацеей: если собирать абсолютно всё, где-то должен попасться алмаз (или крупинки золота, или искомая иголка, или любая другая метафора) и компания станет успешной. Горькая правда в том, что одних только данных недостаточно. Небольшое количество чистой, достоверной информации может быть гораздо более ценно, чем петабайты мусора.
Требование № 2: данные должны быть общедоступными.
Наличие точных и своевременных данных по теме еще не делает управление в вашей компании управлением на основе данных. Данные также должны отвечать еще ряду требований.
Данные могут быть объединены
Их формат должен при необходимости допускать объединение с другими данными компании. Варианты могут быть разные: реляционные базы данных, хранилища NoSQL или Hadoop. Используйте инструмент, который отвечает вашим конкретным требованиям. Например, в течение длительного времени финансовые аналитики в компании Warby Parker использовали Excel для вычисления основных показателей, которые они предоставляли высшему руководству. Они собирали огромное количество сырых данных из разных источников и запускали функцию ВПР (VLOOKUP — функцию в Excel для поиска перекрестных ссылок в данных), чтобы объединить весь массив данных и взглянуть на них в перспективе. Изначально это работало, но по мере того как базы данных по клиентам и продажам быстро росли и информации становилось все больше, объем файла в Excel начал приближаться к 300 МВ, загрузка оперативной памяти компьютеров была максимальной, а обработка файла с помощью функции ВПР начала занимать до десяти часов и больше, при этом программа периодически зависала, и ее приходилось запускать заново. Специалисты компании применяли этот инструмент и подход так долго, как могли, но если когда-то Excel была вполне удобным инструментом, то динамичный рост компании изменил ситуацию. Механика получения этих данных превратилась для аналитиков в «пожиратель времени» и источник стресса: они никогда не знали, получат ли необходимые им данные или через десять часов им вновь придется перезапускать функцию ВПР. Условно говоря, из специалистов по анализу данных они превратились в специалистов Microsoft по сбору данных. Моя команда помогла перенести весь массив информации в реляционную базу данных в MySQL. Мы написали запросы для обработки данных для аналитиков, чтобы они могли сосредоточиться на анализе, выявлении трендов и презентации этих данных, что было гораздо более эффективным использованием их рабочего времени. Теперь, когда в их распоряжении более эффективные инструменты и больше времени, они способны проводить более глубокий анализ.
Читать дальше
Конец ознакомительного отрывка
Купить книгу