Для всестороннего и углубленного изучения явлений, для объективной характеристики типов явлений, их взаимоотношений и процессов, обусловленных развитием системы как целого, необходимо сочетать групповые средние с общими средними. Сочетание таких средних и является одним из основных элементов анализа сложных систем. Это сочетание связывает в одно целое два органически дополняющих друг друга статистических метода: метод средних величин и метод группировки. При расчете средней индивидуальные варьирующие по группе значения заменяются одним средним значением. При этом случайные отклонения значения признака по отдельным единицам в сторону увеличения или уменьшения взаимно уравновешиваются и погашают друг друга, а в величине средней проявляется типичный размер признака, свойственный данной группе. Средняя величина служит характеристикой совокупности и в то же время относится к отдельному ее элементу – носителю качественных особенностей явления. Значение средней вполне конкретно, но одновременно и абстрактно; оно получено путем абстрагирования от случайного индивидуального по каждой единице с целью выявления того общего, типичного, что свойственно всем единицам и что формирует данную совокупность. При расчете средней величины численность единиц совокупности должна быть достаточно большой. Величина средней определяется как отношение общего объема явлений к числу единиц совокупности в группе. Для несгруппированных данных это будет средняя арифметическая простая:
а для сгруппированных данных, где каждое значение признака имеет свою частоту, – средняя арифметическая взвешенная:
где X i – значение признака; f i – частота этих значений признака.
Поскольку средняя арифметическая рассчитывается как отношение суммы значений признака к общей численности, она никогда не выходит за пределы этих значений. Средняя арифметическая обладает рядом свойств, которые широко используются в целях упорядочения расчетов.
1. Сумма отклонений индивидуальных значений признака от средней величины всегда равна нулю:
Доказательство. n
Разделив левую и правую часть на
получим:
2. Если значения признака (X i) изменить в k раз, то средняя арифметическая также изменится в x раз.
Доказательство.
Среднюю арифметическую из новых значений признака обозначим X, тогда:
Постоянную величину 1/ k можно вынести за знак суммы, и тогда получим:
3. Если из всех значений признака X i вычесть или прибавить одно и то же постоянное число, то средняя арифметическая уменьшится или увеличится на эту величину.
Доказательство.
Средняя из отклонений значений признака от постоянного числа будет равна:
Точно так же доказывается это и в случае прибавления постоянного числа.
4. Если частоты всех значений признака уменьшить или увеличить в n раз, то средняя не изменится:
При наличии данных об общем объеме и известных значениях признака, но неизвестных частотах для определения среднего показателя используют формулу среднеарифметической взвешенной.
Например, имеются данные о ценах реализации капусты и общей выручке за различные сроки реализации (табл. 1).
Таблица 1.
Цена реализации капусты и общая выручка за различные сроки реализации
Так как средняя цена представляет отношение общей выручки к общему объему реализованной капусты, то вначале следует определить количество реализованной капусты по разным срокам реализации как отношение выручки к цене, а затем уже определить среднюю цену реализованной капусты.
Читать дальше
Конец ознакомительного отрывка
Купить книгу