Математически суперсимметрия объединяет глобальную калибровочную симметрию с дополнительными измерениями, а физически соответствует превращению фермиона в бозон и наоборот. Следует пояснить, что фермионами в физике называют частицы, которые имеют полуцелый спин. Все кварки и лептоны имеют спин, равный 1/2, и относятся к фермионам. К другому классу частиц относятся бозоны — частицы, которые либо вообще не имеют спина (т. е. их спин равен нулю), как, например, частица Хиггса, либо имеют целочисленный спин. К последним наряду с фотоном относятся W- и Z-бозоны (все они имеют спин 1) и гравитон (имеющий спин 2).
Принципиальные различия в физических свойствах фермионов и бозонов связаны с тем, что все переносчики взаимодействий — бозоны, тогда как кварки и лептоны являются фермионами. Поэтому бозоны принято ассоциировать с полем, а фермионы — с веществом. Разумеется, в нашем реальном мире между ними существуют кардинальные различия. Однако теоретики считают, что в начале эволюции Вселенной, в первые минуты ее рождения существовали такие огромные температуры, что бозоны и фермионы постоянно превращались друг в друга. В настоящее время такие переходы невозможны.
Оба мира, наш и суперсимметричный, параллельный (суперпараллельный), никак не взаимодействуют между собой. Для их взаимодействия необходимы общие переносчики. Например, чтобы увидеть суперпараллельный мир, наш глаз должен воспринимать фотино, которые излучает Солнце параллельного мира. Суперпартнеры фермионов нашего мира имеют спин О, и их названия образуются из названий обычных частиц с помощью приставки с-. Например, электрон и кварки со спинами S, имеют суперпартнеров с нулевым спином — сэлектрон и скварки соответственно. Суперпартнеры бозонов, имеющие спин 1/2 получили свои названия путем добавления суффикса — ин-, и окончания — о к корню названия обычной частицы. Например, суперпартнером фотона будет частица со спином 1/2 — фотино. Глюону соответствует — глюино, W-бозону — вино и Z-бозону — зино.
Таким образом, в мире суперпартнеров существует полный, исчерпывающий набор частиц и полей, аналогичных частицам и полям нашего мира. При этом, согласно принципу суперсимметрии, в суперсимметричном параллельном мире между частицами и полями сохраняются те же соотношения, что и между частицами и полями реального мира. Но следует помнить: суперпараллельный мир никак не взаимодействует с нашим, поскольку не существует никаких общих переносчиков взаимодействий. Его свойства проявляются только в скрытых от нас суперпараллельных измерениях. В определенном смысле это является дальнейшим развитием теории Калуцы о существовании дополнительных измерений.
Несмотря на то что в развитие теории суперсимметрии внесли вклад многие физики, математически безупречная формулировка этой концепции стала разрабатываться начиная лишь с 80-х годов XX века несколькими научными группами: А. Неве и Дж. Шварцем из Принстонского университета, Ю. А. Гольфандом и Е. П. Лихтманом из Физического института им. П. Н. Лебедева, Ю. Весом из Университета Карлсруэ в ФРГ и Б. Зумино из Калифорнийского университета в Беркли. Математически эта теория очень сложна и требует огромного количества вычислений. Она постоянно развивается и совершенствуется. Можно с уверенностью утверждать, что она — основа физики XXI века.
До возникновения суперсимметрии физические теории рассматривались лишь как модели, которые приближенно описывают реальность. По мере совершенствования этих моделей согласованность теории с реальностью улучшалась. Теперь же большинство физиков уверены, что суперсимметрия и есть сама реальность, что эта модель идеально согласуется с реальным миром. Ее создание впервые позволило включить в единое поле гравитацию, описание которой на языке суперсимметрии получило название супергравитация. От обычной гравитации она отличается тем, что здесь, наряду с гравитоном — обычным переносчиком гравитационного взаимодействия со спином 2, существует в суперпараллельном мире гравитино, частица со спином 3/2.
Таким образом, хотя суперпараллельный мир (параллельный мир суперсимметрии) существует в том же пространстве, что и наш, однако он никак не взаимодействует с нашим. У нас нет с ним общих переносчиков взаимодействий, которые позволяли бы обнаруживать проявление суперпараллельного мира. Это кажется удивительным, но необходимо понять, что практически любые объекты нашего мира по существу представляют собой пустоту, лишь с редкими вкраплениями элементарных частиц. Вещество даже в массивных объектах из металла и камня занимает миллиардные доли объема. Остальное — безбрежная пустыня вакуума. Настолько безбрежная, что в ней могут одновременно существовать и наш, и суперсимметричный параллельный миры. Они взаимно проникают друг в друга, занимают единый объем пространства, но никак не взаимодействуют между собой.
Читать дальше