Mary Gribbin - Science - A History in 100 Experiments

Здесь есть возможность читать онлайн «Mary Gribbin - Science - A History in 100 Experiments» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Science: A History in 100 Experiments: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Science: A History in 100 Experiments»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A history of science distilled into 100 notable experiments – epic moments that have fuelled our understanding of Earth and the Universe beyond.The history of science is a fascinating and long one, covering thousands of years of history. The development of scientific experiments involves some of the most enlightened cultures in history, as well as some great scientists, philosophers and theologians. As the Nobel Prize-winning physicist Richard Feynman said, ‘If it disagrees with experiment, it is wrong’, the simplest summary of what science is all about. And science is nothing without experiments.Everything in the scientific world view is based on experiment, including observations of phenomena predicted by theories and hypotheses, such as the bending of light as it goes past the Sun. From the discovery of microscopic worlds to weighing the Earth, from making electricity to the accelerating Universe and gravitational waves, this stunning book by renowned science writers John and Mary Gribbin tells the fascinating history of science through the stories of 100 groundbreaking experiments.

Science: A History in 100 Experiments — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Science: A History in 100 Experiments», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

What Archimedes had realized was that the volume of water displaced from the bath was equal to the volume of his body immersed in the water. As silver is less dense than gold, if the crown were made of a mixture of silver and gold it would have to be bigger than a crown made of pure gold in order to have the same weight. And he could measure the volume of the crown, without damaging it, by immersing it in water and seeing how much water was displaced.

Nobody knows exactly how Archimedes carried out the experiment. But the most likely method is based on an observation he described in his book, On Floating Bodies . There, Archimedes explained that the upward force (buoyancy) exerted on an object placed in water (or any other fluid) is equal to the weight of fluid that is displaced. This is now known as Archimedes’ Principle. And, of course, the weight of water displaced will be proportional to the volume of water displaced.

The obvious way to use this to test the purity of the crown, as Archimedes must have realized, would be to balance the crown against exactly the same weight of pure gold on a beam balance above a tank of water. Then, the balance is lowered until the crown and the pure gold sample are immersed in the water, while the balance arm stays above it. If both objects are made of pure gold, they will each displace the same volume (and therefore the same weight) of water, experience the same buoyancy force, and stay in balance. But if the crown is less dense than gold it will have a bigger volume, displace more water, and be more buoyant than the pure gold, so the balance will tip down on the side of the gold. The beauty of this experiment is that you don’t actually have to measure the volume of the crown, or the volume of water that it displaces; you just watch to see if the balance tilts.

That, it seems, is exactly what happened. Archimedes did the experiment (or something very similar) and found that the jeweller had indeed cheated the king. About five centuries after Vitruvius, the story was re-told in a Latin poem ‘ Carmen de ponderibus et mensuris ’ which described the use of such a hydrostatic balance, and in the twelfth century a manuscript called ‘ Mappae clavicula ’ gave detailed instructions on how to make weighings in this way to calculate the proportion of silver in the adulterated crown.

Archimedes’ Principle also explains why a ship made of steel can float. A solid lump of steel displaces a relatively small amount of water, much less than its own weight, and sinks. But if the same amount of steel is spread out in the shape of a boat, or even a simple bowl (like a coracle), a larger volume of water is displaced, weighing more than the weight of the steel, resulting in a large enough upwards force to make the boat float.

No. 2 MEASURING THE DIAMETER OF THE EARTH

The first scientific attempt to measure the size of the Earth was made by a Greek polymath, Eratosthenes of Cyrene (276–194 BC), who was in charge of the Library of Alexandria in the third century BC. He was a contemporary and friend of Archimedes. His experiment involved some observations of his own, made in Alexandria, but combined with evidence from a far away place, the city then known as Syene (now Aswan), which he had never visited.

Eratosthenes learned that each year on the day of the summer solstice, when the Sun is at its highest in the sky, it was exactly overhead at Syene, south of Alexandria. Travellers told how the reflection of the Sun could be seen at the bottom of a deep well in Syene on that day. Even at the summer solstice, the Sun is not directly overhead at Alexandria, because, as Eratosthenes appreciated, the Earth is round. So he made careful measurements of the difference between the angle made by the Sun and the vertical at the time of the solstice, working out that this corresponded to one-fiftieth of a circle, or 7º 12ʹ of arc. Simple geometry told him that this meant that the distance from Alexandria to Syene was one-fiftieth of the circumference of the Earth, assuming (which is not quite true) that Syene lies due south of Alexandria.

The distance from Syene to Alexandria was well known even in Eratosthenes’ day (it is about 800 kilometres in modern units). Egyptian records gave the distance as 5,000 stades, and Eratosthenes checked this by asking camel train drivers how long it took them to make the journey (some sources say he hired a man to pace out the distance; but this may be apocryphal). This gave him a figure of 694 stades per degree, which he rounded off to 700. Multiplying by 360 gave him the circumference of the Earth – 252,000 stades (he could have just multiplied 5,000 by 50 to get the ‘answer’ 250,000, but apparently he did it the hard way).

So what is this in modern units? Unfortunately for us, the Greeks and Egyptians used slightly different stades, but the likelihood is that Eratosthenes, being Greek, used the Greek measurement, where one stade corresponds to 185 metres, which gives a circumference of 46,620 kilometres, only 16.3 per cent too big. In the unlikely event that he used the Egyptian measurement, with one stade corresponding to 157.5 metres, he would have come up with a figure of 39,690 kilometres, just a bit too small (less than 2 per cent smaller than the actual distance, 40,008 kilometres). Either way, it is impressive.

Sheila TerryScience Photo Library Eratosthenes c 276194 BC That was - фото 9

© Sheila Terry/Science Photo Library

Eratosthenes ( c . 276–194 BC).

That was by no means the only impressive achievement of Eratosthenes. He used the information he found in the books in the Library of Alexandria to produce a three-volume book of his own in which he mapped and described the entire known world. He used grids of overlapping lines, like modern lines of latitude and lines of longitude, to locate places, and invented many of the terms still used by geographers today. More than four hundred cities were named and located in the book. Unfortunately the book itself, called Geographika , was lost, but parts of it have been reconstructed from references to it in other works. Book Two of Geographika included Eratosthenes’ estimate of the size of the Earth. According to Ptolemy, Eratosthenes measured the tilt of the Earth’s axis, which is related to the measurement of the circumference, very accurately, getting a value of 11/ 83of 180º, which is 23º 51ʹ 15ʺ. He also worked out a calendar that included leap years, and he tried to establish a chronology of literary and political events going back to the siege of Troy.

Collection AbecasisScience Photo Library The World by Eratosthenes 1886 - фото 10

© Collection Abecasis/Science Photo Library

The World by Eratosthenes. 1886 replica of a map of the known world according to the Ancient Greek geographer, mathematician and astronomer Eratosthenes.

Eratosthenes was very much an all-rounder, so much so that he had the nickname ‘Beta’, because he was second best at everything, according to his contemporaries. The Greek geographer Strabo, who lived from about 64 BC to AD 24, described Eratosthenes as the best mathematician among the geographers, and the best geographer among the mathematicians. In mathematics, he is known for a technique called ‘the sieve of Eratosthenes’, used to find prime numbers. This simple method, which he invented, involves making a list (or grid) of all the numbers up to the biggest one you are interested in (for example, 1 to 1000). Then, you cross off from the list all the multiples of 2, the first prime number (4, 6, 8 and so on, but not 2 itself), and check that the next lowest number not crossed off is prime (if it isn’t, you have made a mistake!). If it is, cross off all the multiples of that number (but not the number itself), and so on. Once you get to the end of the list, the numbers that have not been crossed off form the list of primes.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Science: A History in 100 Experiments»

Представляем Вашему вниманию похожие книги на «Science: A History in 100 Experiments» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Science: A History in 100 Experiments»

Обсуждение, отзывы о книге «Science: A History in 100 Experiments» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x