Shaoshan Liu - Engineering Autonomous Vehicles and Robots

Здесь есть возможность читать онлайн «Shaoshan Liu - Engineering Autonomous Vehicles and Robots» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Autonomous Vehicles and Robots: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Autonomous Vehicles and Robots»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Offers a step-by-step guide to building autonomous vehicles and robots, with source code and accompanying videos The first book of its kind on the detailed steps for creating an autonomous vehicle or robot, this book provides an overview of the technology and introduction of the key elements involved in developing autonomous vehicles, and offers an excellent introduction to the basics for someone new to the topic of autonomous vehicles and the innovative, modular-based engineering approach called DragonFly.
Engineering Autonomous Vehicles and Robots: The DragonFly Modular-based Approach
and
Offers progressive guidance on building autonomous vehicles and robots Provides detailed steps and codes to create an autonomous machine, at affordable cost, and with a modular approach Written by one of the pioneers in the field building autonomous vehicles Includes case studies, source code, and state-of-the art research results Accompanied by a website with supplementary material, including sample code for chassis/sonar/radar; GPS deployment methods; Vision Calibration methods
is an excellent book for students, researchers, and practitioners in the field of autonomous vehicles and robots.

Engineering Autonomous Vehicles and Robots — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Autonomous Vehicles and Robots», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Hybrid network: The bus and star topologies can be combined to form a hybrid topology. Future FlexRay networks will likely consist of hybrid networks to take advantage of the ease-of-use and cost advantages of the bus topology while applying the performance and reliability of star networks where needed in a vehicle.

2.3.2 The FlexRay Communication Protocol

The FlexRay communication protocol is a time-triggered protocol that provides options for deterministic data that arrive in a predictable time frame (down to the microsecond) as well as CAN-like dynamic event-driven data to handle a large variety of frames. FlexRay accomplishes this hybrid of core static frames and dynamic frames with a pre-set communication cycle that provides a predefined space for static and dynamic data. This space is configured with the network by the network designer.

While CAN nodes only need to know the correct baud rate to communicate, nodes on a FlexRay network must know how all the pieces of the network are configured in order to communicate. As with any multi-drop bus, only one node can electrically write data to the bus at a time. If two nodes were to write at the same time, you end up with contention on the bus and data become corrupt. There are a variety of schemes used to prevent contention on a bus. CAN, for example, used an arbitration scheme where nodes will yield to other nodes if they see a message with higher priority being sent on a bus. While flexible and easy to expand, this technique does not allow for very high data rates and cannot guarantee timely delivery of data.

FlexRay manages multiple nodes with a Time Division Multiple Access (TDMA) scheme. Every FlexRay node is synchronized to the same clock, and each node waits for its turn to write on the bus. Because the timing is consistent in a TDMA scheme, FlexRay is able to guarantee determinism or the consistency of data delivery to nodes on the network. This provides many advantages for systems that depend on up-to-date data between nodes. Embedded networks are different from PC-based networks in that they have a closed configuration and do not change once they are assembled in the production product. This eliminates the need for additional mechanisms to automatically discover and configure devices at run time.

Table 2.1 Comparisons between CAN and FlexRay.

CAN FlexRay
Bandwidth 1 Mbps 10 Mbps
Number of channels 1 2
Frame data length 0~8 0~254
Communication Dynamic arbitration TDMA
Complexity Low High
Composability No Yes
Flexibility One topology Many different topologies

By designing network configurations ahead of time, network designers save significant cost and increase reliability of the network. For a TDMA network such as FlexRay to work correctly, all nodes must be configured correctly. The FlexRay standard is adaptable to many different types of networks and allows network designers to make tradeoffs between network update speeds, deterministic data volume, and dynamic data volume among other parameters. Every FlexRay network may be different, so each node must be programmed with correct network parameters before it can participate on the bus.

Table 2.1provides a summary of comparisons between CAN and FlexRay [4]. For the rest of this chapter, we will focus on CAN as this is still the most popular protocol today and it is simple to use.

2.4 CANopen

CANopen is a communication protocol and device profile specification for embedded systems used in automation. In terms of the OSI model (shown in Figure 2.1), CANopen implements the layers above and including the network layer. The CANopen standard consists of an addressing scheme, several small communication protocols, and an application layer defined by a device profile [5].

The CANopen communication protocol has support for network management (NMT), device monitoring, and communication between nodes, including a simple transport layer for message segmentation and desegmentation. The lower level protocol implementing the data link and physical layers is usually CAN, although devices using some other means of communication (such as Ethernet Powerlink, EtherCAT) can also implement the CANopen device profile.

The basic CANopen device and communication profiles are given in the CiA 301 specification released by CAN in Automation. Profiles for more specialized devices are built on top of this basic profile, and are specified in numerous other standards released by CAN in Automation, such as CiA 401 for I/O modules and CiA 402 for motion control.

Every CANopen device has to implement certain standard features in its controlling software. A communication unit implements the protocols for messaging with the other nodes in the network. Starting and resetting the device is controlled via a state machine. It must contain the states Initialization, Pre-operational, Operational, and Stopped.

The transitions between states are made by issuing a NMT communication object to the device. The object dictionary is an array of variables with a 16-bit index. Additionally, each variable can have an 8-bit subindex. The variables can be used to configure the device and reflect its environment, i.e. contain measurement data.

The application part of the device actually performs the desired function of the device, after the state machine is set to the operational state. The application is configured by variables in the object dictionary and the data are sent and received through the communication layer.

2.4.1 Object Dictionary

CANopen devices must maintain an object dictionary, which is used for configuration and communication with the device. An entry in the object dictionary is defined by:

Index, the 16-bit address of the object in the dictionary.

Object name (Object Type/Size), a symbolic type of the object in the entry, such as an array, record, or simple variable.

Name, a string describing the entry.

Type, this gives the datatype of the variable (or the datatype of all variables of an array).

Attribute, which gives information on the access rights for this entry, this can be read/write, read-only, or write-only.

The Mandatory/Optional field (M/O) defines whether a device conforming to the device specification has to implement this object or not.

The basic data types for object dictionary values such as Boolean, integers, and floats are defined in the standard (their size in bits is optionally stored in the related type definition, index range 0x0001–0x001F), as well as composite data types such as strings, arrays, and records (defined in index range 0x0040–0x025F). The composite data types can be subindexed with an 8-bit index; the value in subindex 0 of an array or record indicates the number of elements in the data structure, and is of type UNSIGNED8.

2.4.2 Profile Family

CANopen defines a standardized application for distributed industrial automation systems based on CAN. The CANopen profile family is based on a “Communication Profile,” which specifies the basic communication mechanisms and on a standardized form for describing the functionality of devices.

The most important device types such as digital and analog I/O modules, drives, operating devices, sensors, or programmable controllers are described by so-called “Device Profiles.” In the device profiles the functionality, parameters, and data of standard devices of the corresponding types are specified. Based on the standardized profiles, devices of different manufacturers can be accessed via the bus in exactly the same manner. Therefore devices of different manufacturers are interoperable and exchangeable.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Autonomous Vehicles and Robots»

Представляем Вашему вниманию похожие книги на «Engineering Autonomous Vehicles and Robots» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Autonomous Vehicles and Robots»

Обсуждение, отзывы о книге «Engineering Autonomous Vehicles and Robots» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x