Petros Katsafados - Numerical Weather Prediction and Data Assimilation

Здесь есть возможность читать онлайн «Petros Katsafados - Numerical Weather Prediction and Data Assimilation» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Weather Prediction and Data Assimilation: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Weather Prediction and Data Assimilation»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book has as main aim to be an introductory textbook of applied knowledge in Numerical Weather Prediction (NWP), which is a method of weather forecasting that employs: A set of equations that describe the flow of fluids translated into computer code, combined with parameterizations of other processes, applied on a specific domain and integrated in the basis of initial and domain boundary conditions. Current weather observations serve as input to the numerical computer models through a process called data assimilation to produce atmospheric properties in the future (e.g. temperature, precipitation, and a lot of other meteorological parameters). Various case studies will be also presented and analyzed through this book.

Numerical Weather Prediction and Data Assimilation — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Weather Prediction and Data Assimilation», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

29 22

30 23

31 24

32 25

33 26

34 27

35 28

36 29

37 30

38 31

39 32

40 33

41 34

42 35

43 36

44 37

45 38

46 39

47 40

48 41

49 42

50 43

51 44

52 45

53 46

54 47

55 48

56 49

57 50

58 51

59 52

60 53

61 54

62 55

63 56

64 57

65 58

66 59

67 60

68 61

69 62

70 63

71 64

72 65

73 66

74 67

75 68

76 69

77 70

78 71

79 72

80 73

81 74

82 75

83 76

84 77

85 78

86 79

87 80

88 81

89 82

90 83

91 84

92 85

93 86

94 87

95 88

96 89

97 90

98 91

99 92

100 93

101 94

102 95

103 96

104 97

105 98

106 99

107 100

108 101

109 102

110 103

111 104

112 105

113 106

114 107

115 108

116 109

117 110

118 111

119 112

120 113

121 114

122 115

123 116

124 117

125 118

126 119

127 120

128 121

129 122

130 123

131 124

132 125

133 126

134 127

135 128

136 129

137 130

138 131

139 132

140 133

141 134

142 135

143 136

144 137

145 138

146 139

147 140

148 141

149 142

150 143

151 144

152 145

153 146

154 147

155 148

156 149

157 150

158 151

159 152

160 153

161 154

162 155

163 156

164 157

165 158

166 159

167 160

168 161

169 162

170 163

171 164

172 165

173 166

174 167

175 168

176 169

177 170

178 171

179 172

180 173

181 174

182 175

183 176

184 177

185 178

186 179

187 180

188 181

189 182

190 183

191 184

192 185

193 186

194 187

195 188

196 189

197 190

198 191

199 192

200 193

201 194

202 195

203 196

204 197

205 198

206 199

207 200

208 201

209 202

210 203

211 204

212 205

213 206

214 207

215 208

216 209

217 210

218 211

219 212

220 213

221 214

222 215

Engineering, Energy and Architecture Set

coordinated by

Lazaros E. Mavromatidis

Volume 6

Numerical Weather Prediction and Data Assimilation

Petros Katsafados

Elias Mavromatidis

Christos Spyrou

First published 2020 in Great Britain and the United States by ISTE Ltd and - фото 1

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.com

© ISTE Ltd 2020

The rights of Petros Katsafados, Elias Mavromatidis and Christos Spyrou to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020931739

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-141-3

Preface

This book reflects the need to provide fundamental knowledge about theoretical and applied numerical weather prediction (NWP) and data assimilation (DA). It has been written to support undergraduates and graduates in atmospheric or Earth sciences and introduce students to elementary atmospheric dynamics and modeling, finite difference methods, numerical parameterizations, and optimization methods. This book has a more introductory and applied approach to the methods and techniques for NWP. It also includes essential materials for meteorological DA and modeling of the desert dust cycle in the atmospheric environment. Emission patterns, advection methods and deposition processes are all deployed in the chapter describing the desert dust cycle. The final chapter consists of real case studies simulating extreme weather events and a dust outbreak in hindcasting, nowcasting and forecasting modes.

This book is divided into six main chapters and two appendices. Apart from a brief introduction to NWP and DA in the Introduction, the theoretical material is covered in Chapters 1– 4. The primitive equations governing the main atmospheric motions are analytically presented in Chapter 1, and the methods of solutions and finite difference schemes are included in Chapter 2. The implementation of the primitive equations on grid structures with boundary condition treatment is presented in Chapter 3. DA including successive correction methods and the variational approach with simple examples are introduced in Chapter 4. Chapter 5is devoted to the analysis and modeling of desert dust processes, as well as a review of the parameterizations of dust feedbacks on climate. Finally, the simulations of three extreme weather events and a desert dust outbreak are presented in Chapter 6. The cases have been chosen as paradigms of phenomena on different time and spatial scales and to explore how such processes are eventually resolved in an atmospheric simulation. The appendices are presented at the end of this book, which include the basics of vector analysis and transformations into a rotating coordinate system, as well as turbulent diffusion and planetary boundary layer parameterizations.

Acknowledgments : We are indebted to a number of colleagues and PhD candidates for their contributions during the preparation of this book. Dr. George Varlas, Ms. E. Papadopoulou, Ms. V. M. Nomikou and Ms. A. Pappa are all acknowledged for their contributions to performing a part of the embedded simulations and results analysis. The European Centre for Medium Range Weather Forecasts (ECMWF), the National Center for Environmental Predictions (NCEP) and the National Oceanic and Atmospheric Administration (NOAA) are acknowledged for providing gridded analyses and climatologies, as well as surface observational data. The National Center for Atmospheric Research (NCAR) and the University Corporation for Atmospheric Research (UCAR) are also acknowledged for making available to us the Community Atmosphere Model version 3 (CAM3) and the Weather Research and Forecasting (WRF) model. Finally, we are grateful to the Hellenic National Meteorological Service (HNMS) and the National Observatory of Athens (NOA) for providing the precipitation measurements used in the case study of nowcasting in Chapter 6.

Petros KATSAFADOS

Elias MAVROMATIDIS

Christos SPYROU

February 2020

Introduction

Numerical weather prediction (NWP) is the state-of-the-art method for supporting atmospheric modeling and weather forecasting that combines a set of differential equations, describing grid scale motions, with parameterizations of the non-physically resolved processes usually deployed in the sub-grid scale. All of these are applied to a geographical domain with specific resolution and integrated on the basis of initial and domain boundary conditions. The set of differential equations govern changes in the motion and thermodynamics of the atmosphere, which are derived from conservation laws of mass, momentum, energy and moisture. They are written in the Eulerian framework, in which values and their partial derivatives (changes in the variable over time, for example, ∂T/∂t , or space ∂T/∂x ) are considered at fixed locations on Earth. The atmospheric variables of the equations (e.g. temperature, humidity, wind components, pressure and many others) have independent variables in space, longitude ( x ), latitude ( y ), height ( z ) and time ( t ). The partial derivatives of the atmospheric variables are extremely complex, hence they cannot be solved analytically. Therefore, only approximate solutions are obtained through advanced numerical methods. Since these equations govern how the variables change in space and time, knowledge of the initial condition of the atmosphere is essential to solve the equations and estimate new values of these variables. Thus, NWP is considered as an initial value problem. Various types of weather observations can serve as input to produce initial conditions of the differential equations through a process called data assimilation (DA). It is a method of combining observations with model outputs in order to reduce the errors of the latter. This method is based on the optimal fitting of the model state to the observations for a given time to produce analysis fields which correspond to the best estimation of the atmospheric variables.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Weather Prediction and Data Assimilation»

Представляем Вашему вниманию похожие книги на «Numerical Weather Prediction and Data Assimilation» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Weather Prediction and Data Assimilation»

Обсуждение, отзывы о книге «Numerical Weather Prediction and Data Assimilation» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x