Franco Taroni - Statistics and the Evaluation of Evidence for Forensic Scientists

Здесь есть возможность читать онлайн «Franco Taroni - Statistics and the Evaluation of Evidence for Forensic Scientists» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Statistics and the Evaluation of Evidence for Forensic Scientists: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Statistics and the Evaluation of Evidence for Forensic Scientists»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

T
he leading resource in the statistical evaluation and interpretation of forensic evidence
The third edition of 
 is fully updated to provide the latest research and developments in the use of statistical techniques to evaluate and interpret evidence. Courts are increasingly aware of the importance of proper evidence assessment when there is an element of uncertainty. Because of the increasing availability of data, the role of statistical and probabilistic reasoning is gaining a higher profile in criminal cases. That’s why lawyers, forensic scientists, graduate students, and researchers will find this book an essential resource, one which explores how forensic evidence can be evaluated and interpreted statistically. It’s written as an accessible source of information for all those with an interest in the evaluation and interpretation of forensic scientific evidence. 
Discusses the entire chain of reasoning–from evidence pre-assessment to court presentation; Includes material for the understanding of evidence interpretation for single and multiple trace evidence; Provides real examples and data for improved understanding. Since the first edition of this book was published in 1995, this respected series has remained a leading resource in the statistical evaluation of forensic evidence. It shares knowledge from authors in the fields of statistics and forensic science who are international experts in the area of evidence evaluation and interpretation. This book helps people to deal with uncertainty related to scientific evidence and propositions. It introduces a method of reasoning that shows how to update beliefs coherently and to act rationally. In this edition, readers can find new information on the topics of elicitation, subjective probabilities, decision analysis, and cognitive bias, all discussed in a Bayesian framework.

Statistics and the Evaluation of Evidence for Forensic Scientists — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Statistics and the Evaluation of Evidence for Forensic Scientists», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Practically, consider the following hypothetical case example. A laboratory receives a consignment of discrete items whose attributes may be relevant within the context of a criminal investigation. The laboratory is requested to conduct analyses in order to gather information that should allow an inference to be drawn, for example about the proportion of items in the consignment that are of a certain kind (e.g. counterfeit products). The term ‘positive’ is used here to refer to the presence of an item's property that is of interest (e.g. counterfeit); otherwise the result of the analysis is termed ‘negative’. This allows the introduction of a random variable картинка 331that takes the value 1 (i.e. success) if the analysed unit is positive and 0 (i.e. failure) otherwise. This is a generic type of case that applies well to many situations, such as surveys or, more generally, sampling procedures conducted to infer the proportion of individuals or items in a population who share a given property or possess certain characteristics (e.g. that of being counterfeit). Suppose now that Statistics and the Evaluation of Evidence for Forensic Scientists - изображение 332units are analysed, so that there are Statistics and the Evaluation of Evidence for Forensic Scientists - изображение 333possible outcomes. The forensic scientist should be able to assign a probability to each of the 1024 possible outcomes. At this point, if it was reasonable to assume that only the observed values Statistics and the Evaluation of Evidence for Forensic Scientists - изображение 334matter and not the order in which they appear, the forensic scientist would have a sensibly simplified task. In fact, the total number of probability assignments would reduce from 1024 to 11, since it is assumed that all sequences are assigned the same probability if they have the same number of 1's, (i.e. successes). This is possible if it is thought that all the items are indistinguishable in the sense that it does not matter which particular item produced a success (e.g. a positive response) or a failure (e.g. a negative response). Stated otherwise, this means that one's probability assignment is invariant under changes in the order of successes and failures. If the outcomes were permuted in any way, assigned probabilities would be unchanged. For a coin‐tossing experiment, Lindley (2014) has expressed this as follows:

One way of expressing this is to say that any one toss, with its resulting outcome, may be exchanged for any other with the same outcome, in the sense that the exchange will not alter your belief, expressing the idea that the tosses were done under conditions that you feel were identical. (p. 148)

The role of exchangeability in the reconciliation of subjective probabilities and frequencies in forensic science is developed in Taroni et al. (2018). It is possible to give relative frequency an explicit role in probability assignments but this does not mean that probabilities can only be given when relative frequencies are available.

The existence of relative frequencies is not a necessary condition for the assignment of probabilities. Typically, relative frequencies are not available in the case of single (not replicable) events. Other methods of elicitation, such as scoring rules, can be implemented to deal with such situations. An extended discussion on elicitation is given by O'Hagan et al. (2006).

The use of scores for the assessment of forecasts is described in DeGroot and Fienberg (1983). The association of scores for the assessment of forecasts and the use of scores for the assessment of the performance of methods for evidence evaluation will be made clear later in Section 8.4.3. A score is used to evaluate and compare forecasters who present their predictions of whether or not an event will occur as a subjective probability of the occurrence of that event. A common use for forecasts is that of weather from one day to the next. Let картинка 335denote a forecaster's prediction of rain on the following day. Let картинка 336be the forecaster's actual subjective probability of rain for that day. Let an arbitrary function картинка 337be the forecaster's score if rain occurs and let another arbitrary function картинка 338be their score if rain does not occur. With an assumption that the forecaster wishes to maximise their score, assume that картинка 339is an increasing function of картинка 340and картинка 341is a decreasing function of картинка 342. For a prediction of картинка 343and an actual subjective probability of the expected score of the forecaster is 13 A proper scoring rule is one - фото 344, the expected score of the forecaster is

(1.3) A proper scoring rule is one for which 13 is maximised when A strictly - фото 345

A proper scoring rule is one for which ( 1.3) is maximised when картинка 346. A strictly proper scoring rule is one for which картинка 347is the only value of картинка 348that maximises ( 1.3).

One of the earliest scoring rules, proposed for meteorological forecasts, is the quadratic scoring rule (Brier 1950). This score has the property that the forecaster will minimise their subjective expected Brier score on any particular day with a stated prediction картинка 349of their actual subjective probability of rain on that day The expected Brier score is then 14 This is minimised - фото 350of rain on that day. The expected Brier score is then

(1.4) This is minimised uniquely when The negative of the Brier score is a strictly - фото 351

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Statistics and the Evaluation of Evidence for Forensic Scientists»

Представляем Вашему вниманию похожие книги на «Statistics and the Evaluation of Evidence for Forensic Scientists» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Statistics and the Evaluation of Evidence for Forensic Scientists»

Обсуждение, отзывы о книге «Statistics and the Evaluation of Evidence for Forensic Scientists» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x