71. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the-application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chem. Sci. 7, 4548-4556, 2016. https://doi.org/10.1039/c5sc04845a.
72. M. Becker, T. Kluner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors, DaltonTrans . 46, 3500-3509, 2017. https://doi.org/10.1039/c6dt04796c.
73. W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham, Chemically diverse and multifunctional hybrid organic-inorganic perovskites, Nat. Rev. Mater. 2017. https://doi.org/10.1038/natrevmats.2016.99.
74. P.S. Whitfield, N. Herron, W.E. Guise, K. Page, Y.Q. Cheng, I. Milas,M.K. Crawford, Structures, phase transitions and tricriticalbehavior of the hybridperovskite methyl ammonium lead iodide, Sci. Rep. 2016. https://doi.org/10.1038/srep35685.
75. R. Santbergen, R.J.C. van Zolingen, The absorption factor of crystalline silicon PV cells: a numerical and experimental study, Sol. Energy Mater. Sol. Cells 92, 432-444, 2008. https://doi.org/10.1016/J.SOLMAT.2007.10.005.
76. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, F. De Angelis, Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells, Energy Environ . Sci. 2016. https://doi.org/10.1039/c5ee02925b.
77. N.K. Kumawat, A. Dey, A. Kumar, S.P. Gopinathan, K.L. Narasimhan, D. Kabra,Band gap tuning of CH 3 NH 3 Pb(Br 1e x Cl x) 3 hybrid perovskite for blueelectroluminescence, ACS Appl. Mater. Interfaces 7, 13119-13124, 2015. https://doi.org/10.1021/acsami.5b02159.
78. S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, Bandgap tuning of lead halide perovskites using a sequential deposition process, J. Mater.Chem. A. 2, 9221-9225, 2014. https://doi.org/10.1039/C4TA00435C.
79. A.M. Ganose, C.N. Savory, D.O. Scanlon, Beyondmethylammonium lead iodide:prospects for the emergent field of ns 2containing solar absorbers, Chem. Commun . 2017. https://doi.org/10.1039/c6cc06475b.
80. P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3and CH3NH3SnI3 perovskites for solar cell applications, Sci. Rep . 4, 4467, 2015. https://doi.org/10.1038/srep04467.
81. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Gratzel, F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedral tilting, Nano Lett . 14, 3608-3616, 2014. https://doi.org/10.1021/nl5012992.
82. T. Liu, Y. Zong, Y. Zhou, M. Yang, Z. Li, O.S. Game, K. Zhu, R. Zhu, Q. Gong, N.P. Padture, High-performance formamidinium-based perovskite solar cells viamicrostructure-mediated d-to-a phase transformation, Chem. Mater. 2017. https://doi.org/10.1021/acs.chemmater.7b00523.
83. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Gratzel, A vacuum flash-assisted solution process for high-efficiency large-areaperovskite solar cells, Science 353, 58-62, 2016. https://doi.org/10.1126/science.aaf8060.
84. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc . 131, 6050-6051, 2009. https://doi.org/10.1021/ja809598r.
85. H.-S. Kim, C.-R.Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Gr€atzel, N.-G. Park, Lead iodideperovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2, 591, 2012. https://doi.org/10.1038/srep00591.
86. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskitesensitized solar cells, Nature 499 316-319, 2013. https://doi.org/10.1038/nature12340.
87. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybridsolar cells based on meso-superstructuredorganometal halide perovskites, Science, 80, 2012. https://doi.org/10.1126/science.1228604.
88. Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers,J.C. Wright, S. Jin, Solution growth of single crystal methylammonium lead halideperovskite nanostructures for optoelectronic and photovoltaic applications, J. Am. Chem. Soc. 137, 5810-5818, 2015. https://doi.org/10.1021/jacs.5b02651.
89. N. Yaghoobi, D. Saranin, A. L. Palma & A. Di Carlo, Perovskite solar cells. Solar Cells and Light Management, 163-228. 2020. doi:10.1016/ b978-0-08-102762-2.00005-7.
90. Q. Wali, F. J. Iftikhar, N. K. Elumalai, Y. Iqbal, S.Yousaf, S. Iqbal & R. Jose, Advances in stable and flexible perovskite solar cells. Current Applied Physics , 2020. doi:10.1016/j.cap.2020.03.007.
91. G.R.J. Artus, S. Jung, J. Zimmermann, H.-P.Gautschi, K. Marquardt, S. Seeger, Silicone nanofilaments and their application as superhydrophobic coatings, Adv. Mater . 20, 2758-2762, 2006.
92. S. Sahoo, S. Pradhan & S. Das, Superhydrophobic antireflective polymer coatings with improved solar cell efficiency. Superhydrophobic Polymer Coatings , 281–297, 2019. doi:10.1016/b978-0-12-816671-0.00013-8.
1 * Corresponding author: nayansays@gmail.com
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.