Robert J. Moffat - Planning and Executing Credible Experiments

Здесь есть возможность читать онлайн «Robert J. Moffat - Planning and Executing Credible Experiments» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Planning and Executing Credible Experiments: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Planning and Executing Credible Experiments»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Covers experiment planning, execution, analysis, and reporting This single-source resource guides readers in planning and conducting credible experiments for engineering, science, industrial processes, agriculture, and business. The text takes experimenters all the way through conducting a high-impact experiment, from initial conception, through execution of the experiment, to a defensible final report. It prepares the reader to anticipate the choices faced during each stage. 
Filled with real-world examples from engineering science and industry,
offers chapters that challenge experimenters at each stage of planning and execution and emphasizes uncertainty analysis as a design tool in addition to its role for reporting results. Tested over decades at Stanford University and internationally, the text employs two powerful, free, open-source software tools: GOSSET to optimize experiment design, and R for statistical computing and graphics. A website accompanies the text, providing additional resources and software downloads.
A comprehensive guide to experiment planning, execution, and analysis Leads from initial conception, through the experiment’s launch, to final report Prepares the reader to anticipate the choices faced throughout an experiment Hones the motivating question Employs principles and techniques from Design of Experiments (DoE) Selects experiment designs to obtain the most information from fewer experimental runs Offers chapters that propose questions that an experimenter will need to ask and answer during each stage of planning and execution Demonstrates how uncertainty analysis guides and strengthens each stage Includes examples from real-life industrial experiments Accompanied by a website hosting open-source software
is an excellent resource for graduates and senior undergraduates—as well as professionals—across a wide variety of engineering disciplines.

Planning and Executing Credible Experiments — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Planning and Executing Credible Experiments», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Title Page

3 Copyright Page

4 Dedication Page

5 About the Authors

6 Preface Audience Accompanying Material Recommended Companion Texts

7 Acknowledgments

8 About the Companion Website

9 1 Choosing Credibility 1.1 The Responsibility of an Experimentalist 1.2 Losses of Credibility 1.3 Recovering Credibility 1.4 Starting with a Sharp Axe 1.5 A Systems View of Experimental Work 1.6 In Defense of Being a Generalist References Homework

10 2 The Nature of Experimental Work 2.1 Tested Guide of Strategy and Tactics 2.2 What Can Be Measured and What Cannot? 2.3 Beware Measuring Without Understanding: Warnings from History 2.4 How Does Experimental Work Differ from Theory and Analysis? 2.5 Uncertainty 2.6 Uncertainty Analysis References Homework

11 3 An Overview of Experiment Planning 3.1 Steps in an Experimental Plan 3.2 Iteration and Refinement 3.3 Risk Assessment/Risk Abatement 3.4 Questions to Guide Planning of an Experiment Homework

12 4 Identifying the Motivating Question 4.1 The Prime Need 4.2 An Anchor and a Sieve 4.3 Identifying the Motivating Question Clarifies Thinking 4.4 Three Levels of Questions 4.5 Strong Inference 4.6 Agree on the Form of an Acceptable Answer 4.7 Specify the Allowable Uncertainty 4.8 Final Closure Reference Homework

13 5 Choosing the Approach5.1 Laying Groundwork 5.2 Experiment Classifications 5.3 Real or Simplified Conditions? 5.4 Single‐Sample or Multiple‐Sample? 5.5 Statistical or Parametric Experiment Design? 5.6 Supportive or Refutative? 5.7 The Bottom Line References Homework

14 6 Mapping for Safety, Operation, and Results6.1 Construct Multiple Maps to Illustrate and Guide Experiment Plan 6.2 Mapping Prior Work and Proposed Work 6.3 Mapping the Operable Domain of an Apparatus 6.4 Mapping in Operator's Coordinates 6.5 Mapping the Response Surface

15 7 Refreshing Statistics 7.1 Reviving Key Terms to Quantify Uncertainty 7.2 The Data Distribution Most Commonly EncounteredThe Normal Distribution for Samples of Infinite Size 7.3 Account for Small Samples: The t‐Distribution 7.4 Construct Simple Models by Computer to Explain the Data 7.5 Gain Confidence and Skill at Statistical Modeling Via the R Language 7.6 Report Uncertainty 7.7 Decrease Uncertainty (Improve Credibility) by Isolating Distinct Groups 7.8 Original Data, Summary, and R References Homework

16 8 Exploring Statistical Design of Experiments8.1 Always Seeking Wiser Strategies 8.2 Evolving from Novice Experiment Design 8.3 Two‐Level and Three‐Level Factorial Experiment Plans 8.4 A Three‐Level, Three‐Factor Design 8.5 The Plackett–Burman 12‐Run Screening Design 8.6 Details About Analysis of Statistically Designed Experiments 8.7 Retrospect of Statistical Design Examples 8.8 Philosophy of Statistical Design 8.9 Statistical Design for Conditions That Challenge Factorial Designs 8.10 A Highly Recommended Tool for Statistical Design of Experiments 8.11 More Tools for Statistical Design of Experiments 8.12 Conclusion Further Reading Homework

17 9 Selecting the Data Points 9.1 The Three Categories of Data 9.2 Populating the Operating Volume 9.3 Example from Velocimetry 9.4 Organize the Data 9.5 Strategies to Select Next Data Points 9.6 Demonstrate Gosset for Selecting Data 9.7 Use Gosset to Analyze Results 9.8 Other Options and Features of Gosset 9.9 Using Gosset to Find Local Extrema in a Function of Several Variables 9.10 Summary Further Reading Homework

18 10 Analyzing Measurement Uncertainty10.1 Clarifying Uncertainty Analysis 10.2 Definitions 10.3 The Sources and Types of Errors 10.4 The Basic Mathematics 10.5 Automating the Uncertainty Analysis 10.6 Single‐Sample Uncertainty Analysis References Further Reading Homework

19 11 Using Uncertainty Analysis in Planning and Execution 11.1 Using Uncertainty Analysis in Planning 11.2 Perform Uncertainty Analysis on the DREs 11.3 Using Uncertainty Analysis in Selecting Instruments 11.4 Using Uncertainty Analysis in Debugging an Experiment 11.5 Reporting the Uncertainties in an Experiment 11.6 Multiple‐Sample Uncertainty Analysis 11.7 Coordinate with Uncertainty Analysis Standards 11.8 Describing the Overall Uncertainty in a Single Measurement 11.9 Additional Statistical Tools and Elements References Homework

20 12 Debugging an Experiment, Shakedown, and Validation12.1 Introduction 12.2 Classes of Error 12.3 Using Time‐Series Analysis in Debugging 12.4 Examples 12.5 Process Unsteadiness 12.6 The Effect of Time‐Constant Mismatching 12.7 Using Uncertainty Analysis in Debugging an Experiment 12.8 Debugging the Experiment via the Data Interpretation Program 12.9 Situational Uncertainty

21 13 Trimming Uncertainty13.1 Focusing on the Goal 13.2 A Mlotivating Question for Industrial Production 13.3 Plackett–Burman 12‐Run Results and Motivating Question #3 13.4 PB 12‐Run Results and Motivating Question #1 13.5 Uncertainty Analysis of Dual Predictive Model and Motivating Question #2 13.6 The PB 12‐Run Results and Individual Machine Models 13.7 Final Answers to All Motivating Questions for the PB Example Experiment 13.8 Conclusions

22 14 Documenting the Experiment 14.1 The Logbook 14.2 Report Writing 14.3 International Organization for Standardization, ISO 9000 and other Standards 14.4 Never Forget. Always Remember

23 Appendix A: Distributing Variation and Pooled VarianceA.1 Inescapable Distributions A.2 Other Common Distributions A.3 Pooled Variance (Advanced Topic)

24 Appendix B: Illustrative Tables for Statistical DesignB.1 Useful Tables for Statistical Design of Experiments B.2 The Plackett–Burman (PB) Screening Designs

25 Appendix C: Hand Analysis of Two‐Level Factorial Designs C.1 The General Two‐Level Factorial Design C.2 Estimating the Significance of the Apparent Factor Effects C.3 Hand Analysis of a Plackett–Burman (PB) 12‐Run Design C.4 Illustrative Practice Example for the PB 12‐Run Pattern C.5 Answer Key: Compare Your Hand Calculations C.6 Equations for Hand Calculations

26 Appendix D: Free Recommended Software: Obtain Recommended Free, Open‐Source Software for Your ComputerD.1 Instructions to Obtain the R Language for Statistics D.2 Instructions to Obtain LibreOffice D.3 Instructions to Obtain Gosset D.4 Possible Use of RStudio

27 Index

28 End User License Agreement

List of Tables

1 Chapter 3 Table 3.1 Overview of a research experiment plan. Table 3.2 Review the program plan. Do risk assessment and plan risk abatement. I... Table 3.3 Assess the credibility of the program. Do risk assessment and plan ...

2 Chapter 6Table 6.1 Stanton number as a function of blowing fraction, F.Table 6.2 Data format for computer and statistical analysis: text example.

3 Chapter 7Table 7.1 Economic experiment example for shoe store.Table 7.2 t‐Distribution.

4 Chapter 8Table 8.1 Example 1, Part 1: codebook of test conditions for a three‐level, t...Table 8.2 Example l, Part 2: coding and assignment of trial identification nu...Table 8.3 Example 1, Part 3: the randomized trial schedule and test results.Table 8.4 Example 1, Part 4: Analysis of Variance of the modeling terms.Table 8.5 Example 2, Part 1: Codebook of factors and codings for a six‐factor...Table 8.6 Example 2, Part 2: 12‐run PB design for a six‐ parameter problem.Table 8.7 Example 2, Part 3: Analysis of Variance as parsed for each model te...

5 Chapter 9Table 9.1 Codebook for life jacket safety spreadsheet (total versus partial r...Table 9.2 List of factors for industrial test plan example, plus material pro...Table 9.3 PB‐guided initial 12 runs of industrial example.Table 9.4 Analysis of Variance of factors for the full first‐order linear mod...

6 Chapter 11Table 11.1 Sensitivity coefficients.Table 11.2 Probability points of the double‐sided student's t‐distribution.Table 11.3 Estimating sigma from S N.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Planning and Executing Credible Experiments»

Представляем Вашему вниманию похожие книги на «Planning and Executing Credible Experiments» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Planning and Executing Credible Experiments»

Обсуждение, отзывы о книге «Planning and Executing Credible Experiments» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x