Andreas Winter - Supramolecular Polymers and Assemblies

Здесь есть возможность читать онлайн «Andreas Winter - Supramolecular Polymers and Assemblies» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Supramolecular Polymers and Assemblies: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Supramolecular Polymers and Assemblies»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore modern characterization methods and new applications in this modern overview of supramolecular polymer chemistry  Supramolecular Polymers and Assemblies: From Synthesis to Properties and Applications Characterization remains a primary focus of the book throughout, making it extremely useful for practitioners in the field. Emphasis is also placed on metallo-supramolecular polymers and materials which have found applications in areas like smart or intelligent materials and systems with special photochemical and photophysical properties, like LEDs and solar cells. Applications, including self-healing materials, opto-electronics, sensing, and catalysis are all discussed as well. 
The book details many of the exciting developments in the field of supramolecular chemistry that have occurred since the 1987 Nobel Prize was awarded to pioneers in this rapidly developing field. Readers will also benefit from the inclusion of: 
A thorough introduction to supramolecular assemblies based on ionic interactions Explorations of supramolecular polymers based on hydrogen-bonding interactions, metal-to-ligand interactions, p-Electronic interactions, crown-ether recognition, cucurbiturils, and host-guest chemistry of calixarenes A discussion of cyclodextrins in the field of supramolecular polymers Examinations of supramolecular polymers based on the host-guest chemistry of pillarenes, and those formed by orthogonal non-covalent interactions A treatment of the characterization of supramolecular polymers 
will earn a place in the libraries of researchers and practitioners of the material science, as well as polymer chemists seeding a one-stop reference for supramolecular polymers.

Supramolecular Polymers and Assemblies — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Supramolecular Polymers and Assemblies», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Laboratory for Organic and Macromolecular

Chemistry (IOMC)

Humboldtstraße 10

07743 Jena

Germany

Prof. George R. Newkome

Florida Atlantic University

Center for Molecular Biology and Biotechnology

Jupiter Campus, 5353 Parkside Drive, RF17/207

Jupiter, FL 33458

United States

Dr. Andreas Winter

Friedrich Schiller University Jena

Laboratory for Organic and Macromolecular

Chemistry (IOMC)

Humboldtstraße 10

07743 Jena

Germany

Cover

Cover Image: © Sebestyen Balint/Shutterstock

All books published by Wiley‐VCHare carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:

applied for

British Library Cataloguing‐in‐Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at < http://dnb.d-nb.de>.

© 2021 WILEY‐VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN:978‐3‐527‐33356‐1

ePDF ISBN:978‐3‐527‐83241‐5

ePub ISBN:978‐3‐527‐83240‐8

oBook ISBN:978‐3‐527‐68532‐5

Printing and Binding

Printed on acid‐free paper

10 9 8 7 6 5 4 3 2 1

Preface

There is a long history of the use of both naturally occurring polymers and synthetic polymers culminating in our current deep understanding of supramolecular polymers. In the 1500s, British explorers discovered that Mayan children were playing with rubber balls made from local trees and, 150 years ago, the first synthetic polymer was made by Wesley Hyatt. He treated cellulose with camphor to create a synthetic ivory to meet the needs of the then rapidly growing billiard enterprise. This year, synthetic polymer chemistry celebrates its 100th birthday, marked by when Hermann Staudinger published his then highly controversial proposal that polymers are indeed long chains, which are formed from repeating molecular units by covalent bonds. Throughout the last century, polymer chemistry has evolved tremendously not only with respect to the design and synthesis of tailor‐made architectures but also concerning the wide range of utilitarian applications to be found in our daily lives. By the 1970s, the use of polymer/plastic surpassed that of steel, aluminum, and copper – combined.

In the 1960s, supramolecular polymers were created in which two or more ions or molecules are held together by non‐covalent interactions, such as ionic/Coulombic, hydrogen‐bonding, and π–π‐stacking interactions as well as metal‐to‐ligand coordination. A wide, diverse group of host–guest (inclusion) complexes was named in this context. Despite their chemically, highly different nature, they offer common characteristics, such as the unique ability to assemble linear polymer chains due to the mostly high directionality of these interactions and, even more importantly, their reversibility of binding. Thus, when incorporated into a polymer backbone, materials are obtained that exhibit properties that cannot be realized by traditional, i.e. covalent polymers.

Today, the fundamental theories that govern supramolecular polymerization reactions are well understood using a broad range of traditional and new analytical techniques, allowing their in‐depth characterization both in solution and in the solid state. This overview of the different types of supramolecular polymers is organized according to the non‐covalent interactions from which they have been assembled. In each case, the fundamental aspects as well as examples of supramolecular polymers with respect to their synthesis, properties, and potential applications are summarized. We have attempted to cover each field as detailed as possible in order to assist future researchers in this rapidly expanding arena. Future research on supramolecular polymers will continue to develop and thus, in part, replace traditional historic polymeric materials. It will be important to also make forthcoming materials more biodegradable, lighter, safer, and yet still inexpensive. Hopefully, this overview will help researchers open new pathways to supramolecular systems.

June 2020

Jena & Jupiter

Abbreviations

18C6 18‐crown‐6
A adenine orabsorbance
A 2 second virial coefficient
acac acetoacetate
ACQ aggregation‐caused quenching
AFM atomic force microscopy
AF4 asymmetric flow field flow fractionation
AIE aggregation‐induced emission
Alq3 tris(8‐hydroxyquinolinato)aluminium
ATP adenosine triphosphate
ATRP atom transfer radical polymerization
AUC analytical ultracentrifugation
bdt 1,2‐benzenedithiolate
bFGF basic fibroblast growth factor
Bn benzyl
BODIPY boron‐dipyrromethene
BMP32C10 bis( m ‐phenylene)‐32‐crown‐10
BPP34C10 bis( p ‐phenylene)‐34‐crown‐10
BSA Bovine serum albumin
B21C7 benzo‐21‐crown‐7
cac critical aggregation concentration
CB[ n ] cucurbit[ n ]uril; n = number of glycuril units
CD circular dichroism orcyclodextrin
CDSA crystallization‐driven self‐assembly
c eff effective concentration
Ce6 chlorin‐e6
cgc critical gelation concentration
Ch + cycloheptatrienyl cation
ChE cholinesterase
CIA calixarene‐induced aggregation
CIE commission Internationale de l′Éclairage
CLSM confocal laser scanning microscopy
cmc critical micellar concentration
CNT carbon nanotube
CONASH coordination nanosheet
cpc critical polymerization concentration
CPK (models) 3D molecular models
CS cold spray
CT charge transfer
CuCAAC Cu(I)‐catalyzed azide‐to‐alkyne cycloaddition
CV cyclic voltammetry
CVD chemical vapor deposition
DABCO 1,4‐diazabicyclo[2.2.2]octane
DBU 1,8‐diazabicyclo[5.4.0]undec‐7‐ene
DB24C8 Dibenzo‐24‐crown‐8
DCC dynamic covalent chemistry
DEB diethyl barbiturate
DHP dihexyldecylphosphonate
DLS dynamic light scattering
DMAc dimethyl acetamide
DMF dimethyl formamide
DMSO dimethylsulfoxide
DNA deoxyribonucleic acid
DP degree of polymerization
DPP diphenylphenanthrene ordiketopyrrolopyrrole
DOSY diffusion‐ordered (NMR) spectroscopy
DOX doxorubicin
DQ ( 1H) double quantum
DSC differential scanning calorimetry
Ð dispersity
E molar absorptivity
EDTA ethylenediamine tetraacetic acid
EPR electron paramagnetic resonance
EM effective molarity
ESI electrospray ionization
exTTF π‐extended tetrathiafulvalene
f packing factor
f H host molar fraction
FAB fast atom bombardment
Fc + ferrocenium cation
FDA U.S. Food and Drug Administration
FE field emission
FEB frequency‐domain electric birefringence
FF fill factor
FRET Föster‐type resonance energy transfer
FRP free‐radical polymerization
FTICR Fourier‐transform ion cyclotron resonance
FT‐IR Fourier‐transform infrared
GAL1 Galectin‐1
gMS 2 gradient tandem MS 2
Δ G 0 Gibbs free energy
HBC hexabenzocoronene
HDPE high‐density polyethylene
HEEDTA hydroxyethylethylenediaminetriacetic acid
HER hydrogen‐evolution reaction
HETPHEN heteroleptic phenanthroline
HFIP 1,1,1,3,3,3‐hexafluoroisopropanol
HG host–guest complex
HPLC high‐performance liquid chromatography
HOMO highest occupied molecular orbital
HOPG highly‐ordered pyrolytic graphite
HSAB hard and soft acid and bases
HSCT host‐stabilized charge transfer
I scattered intensity
IDP isodesmic supramolecular polymerization
IM ion mobility
IR infrared
ISA ionic self‐assembly
ITC isothermal titration calorimetry
ITO indium tin oxide
K a association constant
K d dissociation constant
L persistence length of polymer
LB Langmuir–Blodgett
LC liquid crystal (or liquid crystalline)
LCD liquid crystal display
LCST lower critical solution temperature
LED light‐emitting diode
LSI liquid secondary ion
LT low temperature
LUMO lowest unoccupied molecular orbital
M n molar mass
M w molecular weight
MALDI matrix‐assisted laser desorption/ionization
MALS multi‐angle light scattering
MAS magic angle spinning
Mb myglobin
MDI methylenediphenyl‐4,4′‐diisocyanate
mebip 2,6‐bis(1‐methyl‐1H‐benzo[ d ]imidazole‐2‐yl)pyridine
MFP molecular force probe
MLCT metal‐to‐ligand charge transfer
MMLCT metal‐metal‐to‐ligand charge transfer
MM2 molecular modeling 2
MPEG PEM monomethyl ether
MOF metal‐organic frameworks
MS mass spectrometry
MTZ mitoxantrone
MV 2+ methylviologen (i.e. N , N′ ‐Dimethyl‐4,4′‐bipyridinium cation)
NAND “NAND” logic gate
Napy 2,7‐diamido‐1,8‐naphthyridine
NBI naphthalene bisimide
NEP nucleation–elongation polymerization
NHC N ‐heterocyclic carbene
NMP nitroxide‐mediated polymerization or N ‐methylpyrrolidone
NMR nuclear magnetic resonance
Np naphthalene
ODT order–disorder transition
OEG oligo(ethylene glycol)
OF oligofluorene
OFET organic field‐effect transistor
OPE oligo(phenylene‐ethynylene)
OPV oligo(phenylene‐vinylene)
oxSWCNT oxidized single‐walled carbon nanotubes
P form factor
P probability of binding
PAA poly(acrylic acid)
PAC polyelectrolyte–amphiphile complex
PAH polycyclic aromatic hydrocarbon
PANI polyaniline
PBD polybutadiene
PBH poly[( R )‐3‐hydroxybutryic acid]
PBI perylene bisimide
PBS poly(butylene succinate)
PC polycarbonate
PCBA phenyl(C 61)butyric acid
PCBM phenyl[6.6]‐C 61‐butyric acid methyl ester
PCE power conversion efficiency
PCl poly(ε‐caprolactone)
PDMA poly( N , N ‐dimethylacrylamide)
PDMAEMA poly(dimethylaminoethyl methacrylate)
PDMS poly(dimethylsiloxane)
PDT photodynamic therapy
PE polyethylene
PEB poly(ethylene‐ co ‐butylene)
PEC polyelectrolyte complex
PEG poly(ethylene glycol)
PEI polyethyleneimine
PEK poly(etherketone)
PEP poly(ethylene‐ co ‐propylene)
PET poly(ethylene terephthalate)
PFGSE pulse field gradient spin‐echo
PFSD poly(ferrocenyldimethylsilane)
PI polyisoprene
PIB polyisobutylene
PIPS polymerization‐induced phase separation
PLA poly(D,L‐lactide)
PLED polymer‐based light‐emitting diode
PMA poly(methyl acrylate)
PMMA poly(methyl methacrylate)
PMVE poly(vinylmethyl ether)
PNIPAM poly( N ‐isopropyl acrylamide)
POM polarized optical microscopy
PP polypropylene
PPA polyphenylacetylene
PPE poly(phenylene‐ethynylene)
PPI poly(propylene imine)
PPO poly(propylene oxide)
PS polystyrene orphotosensitizer
PSS poly(styrene sulfonate)
PT polythiophene
PTBA poly(tert‐butyl acrylate)
PTFMS poly( p ‐trifluoromethylstyrene)
PTHF poly(tetrahydrofuran)
Pybox 2,6‐bis(oxazol‐2‐yl)pyridine
P2VP poly(2‐vinylpyridine)
P3HT poly(3‐hexylthiophene)
P3MT poly(3‐methylthiophene)
P3OM poly(oxotrimethylene)
P4HB poly(4‐hydroxybutyrate)
P4VP poly(4‐vinylpyridine)
Q heat orscattering vector
QTOF quadrupole time of flight
R g radius of gyration
R h hydrodynamic radius
RAFT reversible addition–fragmentation chain transfer
ROMP ring‐opening metathesis polymerization
ROP ring‐opening polymerizations
SAM self‐assembled monolayer
SANS small‐angle neutron scattering
Sav streptavidin
SAXS small‐angle X‐ray scattering
SCNP single‐chain nanoparticle
SEC size‐exclusion chromatography
SEM scanning electron microscopy
SLS static light scattering
SMFS single‐molecule force spectroscopy
SPM scanning probe microscopy
SQUID superconducting quantum interferase device
STM scanning tunneling microscopy
SWCNTs single‐walled carbon nanotubes
T thymine
T c critical temperature
T g glass transition temperature
T m melting temperature
t ‐Boc tert ‐butoxycarbonyl
TATA + 4,8,12‐triazatriagulenium cation
TBA tetra( n ‐butyl)ammonium cation
TBN 1,3,5‐trinitrobenzene
TCNQ 7,7,8,8‐tetracyanoquinodimethane
TDA Taylor dispersion analysis
TEG triethylene glycol
TEM transmission electron microscopy
TFA trifluoroacetic acid
THF tetrahydrofurane
TM tapping mode
TNF 2,4,6‐trinitrofluorene
TNT 2,4,6‐trinitrotoluene
ToF time of flight
TOTA + 4,8,12‐trioxa‐4,8,12,12c‐tetrahydrodibenzo[ cd , mn ]pyrenium cation
TP tris(pyrazol‐1‐yl)borate
TPE tetraphenylethylene
tpy 2,2′:6′,2″‐terpyridine
TTF tetrathiafulvalene
TWIM travelling wave ion‐mobility
UCST upper critical solution temperature
Ug ureidoguanosine
UHV ultrahigh vacuum
Upy 2‐ureido‐4‐1 H ‐pyrimidinone
UV/vis ultraviolet/visible
VPO vapor pressure osmometry
WAXD wide‐angle X‐ray diffraction
WAXS wide‐angle X‐ray scattering
XPS X‐ray photoelectron spectroscopy
XRD X‐ray diffraction
XXR X‐ray reflectivity

About the Authors

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Supramolecular Polymers and Assemblies»

Представляем Вашему вниманию похожие книги на «Supramolecular Polymers and Assemblies» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Supramolecular Polymers and Assemblies»

Обсуждение, отзывы о книге «Supramolecular Polymers and Assemblies» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x