Biosurfactants for a Sustainable Future

Здесь есть возможность читать онлайн «Biosurfactants for a Sustainable Future» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biosurfactants for a Sustainable Future: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biosurfactants for a Sustainable Future»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the state-of-the-art in biosurfactant technology and its applications in environmental remediation, biomedicine, and biotechnology  Biosurfactants for a Sustainable Future The book emphasizes the different techniques that are used for the production of biosurfactants from microorganisms and their characterization. Various aspects of biosurfactants, including structural characteristics, developments, production, bio-economics and their sustainable use in the environment and biomedicine, are addressed, and the book also presents metagenomic strategies to facilitate the discovery of novel biosurfactants producing microorganisms. Readers will benefit from the inclusion of: 
A thorough introduction to the state-of-the-art in biosurfactant technology, techniques, and applications An exploration of biosurfactant enhanced remediation of sediments contaminated with organics and inorganics A discussion of perspectives for biomedical and biotechnological applications of biosurfactants A review of the antiviral, antimicrobial, and antibiofilm potential of biosurfactants against multi-drug-resistant pathogens. An examination of biosurfactant-inspired control of methicillin-resistant staphylococcus aureus Perfect for academic researchers and scientists working in the petrochemical industry, pharmaceutical industry, and in the agroindustry, 
 will also earn a place in the libraries of scientists working in environmental biotechnology, environmental science, and biomedical engineering.

Biosurfactants for a Sustainable Future — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biosurfactants for a Sustainable Future», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

50 50 Zhou, J., Bruns, M., and Tiedje, J.M. (1996). DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316–322.

51 51 Walter, V., Syldatk, C., and Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. In: Biosurfactants (ed. R. Sen), 1–13. New York: Landes Bioscience and Springer Science.

52 52 Weber, T., Blin, K., Duddela, S. et al. (2015). AntiSMASH 3.0 – a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: 1–7.

53 53 Altschul, S.F., Gish, W., Miller, W. et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

54 54 Suenaga, H. (2012). Targeted metagenomics: A high‐resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol. 14: 13–22. https://doi.org/10.1111/j.1462‐2920.2011.02438.x.

55 55 Tuffin, M., Anderson, D., Heath, C., and Cowan, D. (2009). Metagenomic gene discovery: How far have we moved into novel sequence space? Biotechnol. J. 4: 1671–1683.

56 56 Ekkers, D.M., Cretoiu, M.S., Kielak, A.M., and Elsas, J.D. (2012). The great screen anomaly — a new frontier in product discovery through functional metagenomics. Appl. Microbiol. Biotechnol. 93: 1005–1020.

57 57 Montiel, D., Kang, H.‐S., Chang, F.‐Y. et al. (2015). Yeast homologous recombination‐based promoterengineering for the activation of silent natural product biosynthetic gene clusters. Proc. Natl. Acad. Sci. USA. 112 (29): 8953–8958. https://doi.org/10.1073/pnas.1507606112.

58 58 Chen, Y. and Murrell, J.C. (2010). When metagenomics meets stable‐isotopes probing: Progress and perspectives. Trends Microbiol. 18: 4.

59 59 Dumont, M.G. and Murrell, J.C. (2005). Stable isotope probing – Linking microbial identity to function. Nat. Rev. Microbiol. 3: 499–504.

60 60 Binga, E.K., Lasken, R.S., and Neufeld, J.D. (2008). Something from (almost) nothing: The impact of multiple displacement amplification on microbial ecology. ISME J. 2: 233–241.

61 61 Burch, A.Y., Browne, P.J., Dunlap, C.A. et al. (2011). Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact‐regulated production. Environ. Microbiol. 13: 2681–2691.

62 62 He, S., Ni, Y., Lu, L. et al. (2020). Simultaneous degradation of n‐hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil‐contaminated soils. Chemosphere 242: 125237.

63 63 Lenchi, N., Kebbouche‐Gana, S., Servais, P. et al. (2020). Disel biodegradation capacities and biosurfactants production in saline‐alkaline conditions by Delftia sp. NL1, isolated from an Algerian oilfield. Geomicrobiol. J. https://doi.org/10.1080/01490451.2020.1722769.

64 64 Siegmund, I. and Wagner, F. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5: 265–268.

65 65 Bodour, A.A. and Maier, R.M. (1998). Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant‐producing microorganisms. J. Microbiol. Methods 32: 273–280.

66 66 Burch, A.Y., Shimada, B.K., Browne, P.J., and Lindow, S.E. (2010). Novel high‐throughput detection method to assess bacterial surfactant production. Appl. Environ. Microbiol. 76: 5363–5372.

67 67 Thavasi, R., Sharma, S., and Jayalakshmi, S. (2011). Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J. Pet. Environ. Biotechnol. S1: 001.

68 68 Batista, S.B., Mounteer, A.H., Amorim, F.R., and Totola, M.R. (2006). Isolation and characterization of biosurfactant/bioemulsifier‐producing bacteria from petroleum contaminated sites. Bioresour. Technol. 97: 868–875.

69 69 Rosenberg, M., Gutnick, D., and Rosenberg, E. (1980). Adherence to bacteria to hydrocarbons: A simple method for measuring cell‐surface hydrophobicity. FEMS Microbiol. Lett. 9: 29–33.

70 70 Gidudu, B., Mudenda, E., and Chirwa, E.M.N. (2020). Biosurfactant produced by Serrati sp. and its application in bioremediation enhancement of oil sludge. Chem. Eng. Trans. 79: 433–438.

71 71 Ashitha, A., Radhakrishnan, E.K., and Jyothis, M. (2020). Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J. Biotechnol. https://doi.org/10.1016/j.jbiotec.2020.03.005.

72 72 Charlop‐Powers, Z., Milshteyn, A., and Brady, S.F. (2014). Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19C: 70–75.

73 73 Kim, J.H., Feng, Z., Bauer, J.D. et al. (2010). Cloning large natural product gene clusters from the environment: Piecing environmental DNA gene clusters back together with TAR. Biopolymers 93: 833–844.

74 74 Owen, J.G., Reddy, B.V.B., Ternei, M.A. et al. (2013). Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc. Natl. Acad. Sci. USA. 110: 11797–11802.

75 75 Loeschcke, A., Markert, A., Wilhelm, S. et al. (2013). TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth. Biol. 2: 22–33.

76 76 Ferrer, M., Chernikova, T.N., Yakimov, M.M. et al. (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21: 1266–1267.

77 77 Makrides, S.C. (1996). Strategies for achieving high‐level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512–538.

78 78 Van Elsas, J.D., Speksnijder, A.J., and van Overbeek, L.S. (2008). A procedure for the metagenomics exploration of disease‐suppressive soils. J. Microbiol. Methods 75: 515–522.

79 79 Kakirde, K.S., Parsley, L.C., and Liles, M.R. (2010). Size does matter: Application‐driven approaches for soil metagenomics. Soil Biol. Biochem. 42: 1911–1923.

3 Biosurfactant Production Using Bioreactors from Industrial Byproducts

Arun Karnwal

Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

CHAPTER MENU

1 3.1 Introduction

2 3.2 Significance of the Production of Biosurfactants from Industrial Products

3 3.3 Factors Affect Biosurfactant Production in Bioreactor

4 3.4 Microorganisms 3.4.1 Bacteria 3.4.2 Fungi and Yeast

5 3.5 Bacterial Growth Conditions 3.5.1 Continuous Cultures 3.5.2 Batch Processes 3.5.3 Fed-Batch Process

6 3.6 Substrate for Biosurfactant Production 3.6.1 Production of Biosurfactant with Food and Vegetable Oil Waste 3.6.2 Development of Biosurfactants Using Waste Frying Oil 3.6.3 Fruit and Vegetable Industry Byproducts for Biosurfactant Processing 3.6.4 Starch-Rich Byproduct from the Industry for Biosurfactant Production 3.6.5 Biosurfactant Synthesis from Lignocellulosic Industrial Byproducts

7 3.7 Conclusions

8 Acknowledgement

9 References

3.1 Introduction

Surfactants are amphiphilic molecules with two contrary components, one component being hydrophobic and other hydrophilic in nature [1, 2]. Hydrophobic and hydrophilic components depend on the polar charge, which may be anionic, cationic, neutral, or amphoteric. Biosurfactants are emerging as a promising alternative for synthetic surfactants in the industrial sector, as companies develop environmentally safe biosurfactants using various renewable and organic materials. Usually, the surfactants derived from organic substances comprise both hydrophilic and hydrophobic components. Natural surfactants are a group of secondary metabolites that are widely present in many plants, microorganisms and several sea animals [3]. Surfactants are surface‐active chemicals used in detergents and soaps for reducing surface tension. Biosurfactants can be produced from various low‐cost industrial waste materials ( Figure 3.1).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biosurfactants for a Sustainable Future»

Представляем Вашему вниманию похожие книги на «Biosurfactants for a Sustainable Future» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biosurfactants for a Sustainable Future»

Обсуждение, отзывы о книге «Biosurfactants for a Sustainable Future» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x