De Guzman, V., Vercoutere, W., Shenasa, H., Deamer, D. (2014). Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J. Mol . Evol ., 78(5), 251–262.
Dworkin, J.P., Deamer, D.W., Sandford, S.A., Allamandola, L.J. (2001). Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometaryices. Proc. Natl . Acad. Sci. USA , 98, 815–819.
Engelhart, A.E., Adamala, K.P., Szostak, J.W. (2016). A simple physical mechanism enables homeostasis in primitive cells. Nat. Chem ., 8(5), 448–53.
Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open Biol , 3, 120–143.
Fox, S.W. (1988). The Emergence of Life . Basic Books Publishers, New York.
Gérard, E., De Goeyse, S., Hugoni, M., Agogué, H., Richard, L., Milesi, V., Guyot, F., Lecourt, L., Borensztajn, S., Joseph, M.B., Leclerc, T., Sarazin, G., Jézéquel, D., Leboulanger, C., Ader, M.K. (2018). Role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Frontiers in Microbiology , 9.
Haldane, J.B.S. (1929). The origin of life. The Rationalist Annual , 3–10.
Hamada, S., Yancey, K.G., Pardo, Y., Gan, M., Vanatta, M., An, D., Hu, Y., Derrien, T.L., Ruiz, R., Liu, P., Sabin, J., Luo, D. (2019). Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Science Robotics , 4(29).
Haudin, F., Brau, F., De Wit, A. (2018). La chimie génératrice de forme : végétation métallique et jardins chimiques [Online]. Revue Arts et Sciences V2 N1 . Available at: https://www.openscience.fr/Numero.
Jimbo, T., Sakuma, Y., Urakami, N., Ziherl, P., Imai, M. (2016). Role of inverse-cone-shape lipids in temperature-controlled self-reproduction of binary vesicles. Biophysical Journal , 110, 1551–1562.
Leduc, S. (1912). La biologie synthétique . Poinat, Paris.
Lepot, K., Williford, K.H., Philippot, P., Thomazo, C., Ushikubo, T., Kitajima, K., Mostefaoui, S., Valley, J.W. (2019). Extreme 13C depletions and organic sulfur content argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochimica et Cosmochimica Acta , 244, 522–547.
Locey, K.J., Lennon, J.T. (2016). Scaling laws predict global microbial diversity. PNAS , 113(21), 5970–5975.
Luisi, P.L. (2002). Toward the engineering of minimal living cells. The Anatomical Record , 268, 208–214.
Luisi, P.L. (2016). The Emergence of Life . Cambridge University Press, Cambridge.
Mansy, S.S., Szostak, J.W. (2008). Thermostability of model protocell membranes. PNAS, USA , 105(36), 13351–13355.
Misuraca, L., Natali, F., Da Silva, L., Peters, J., Demé, B., Ollivier, J., Seydel, T., Laux- Lesourd, V., Haertlein, M., Zaccai, G., Deamer, D., Maurel, M.C. (2017). Mobility of a mononucleotide within a lipid matrix: A neutron scattering study. Life (Basel) , 7(1).
Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biol ., 9(8).
Nakatani, Y., Ribeiro, N., Streiff, S., Gotoh, M., Pozzi, G., Désaubry, L., Milon, A. (2014). Search for the most ‘primitive’ membranes and their reinforcers: a review of the polyprenyl phosphates theory. Orig. Life Evol. Biosph ., 44(3), 197–208.
Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., Chivas, A.R. (2016). Nature , 537, 535–538.
Oparin, A.I. (1938). The Origin of Life . MacMillan, New York.
Peterlin, P., Arrigler, V., Kogej, K., Svetina, S., Walde, P. (2009). Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem. Phys. Lipids , 159(2), 67–76.
Prigogine, I. (1947). Étude thermodynamique des phénomènes irréversibles . Dunod, Paris.
Rajamani, S., Vlassov, A., Benner, S., Coombs, A., Olasagasti, F., Deamer, D. (2008). Lipid- assisted synthesis of RNA-like polymers from mononucleotides. Orig. Life Evol. Biosph ., 38, 57–74.
Schopf, J.W. (1993). Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science , 260(5108), 640–646.
Séris, J.-P. (1994). La technique . PUF, Paris.
Singer, E. (2007). Craig Venter’s genome. MIT Technology Review , September 4.
Thomas, P. (2011). Les fers rubanés ( Banded Iron Formation ) de l’Archéen de Barberton, groupe de Fig Tree (-3,26 à -3,22 Ga), Afrique du Sud [Online]. Available at: https://planet-terre.ens-lyon.fr/image-de-la-semaine/ Img364–2011-10–10.xml.
Thomas, P. (2016). L’origine de la vie vue par un géologue qui aime l’astronomie [Online]. Available at: https://planet-terre.ens-lyon.fr/article/origine-vie-2016.xml.
Toppozini, L., Dies, H., Deamer, D.W., Rheinstädter, M.C. (2013). Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: Insights into assembly of nucleic acid for primitive life. PLoS ONE , 8(5).
Varela, F.G., Maturana, F.H., Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. BioSystems , 5(4), 187–196.
Von Foerster, H. (1961). A predictive model for self-organizing systems. Cybernetica , 3(4), 258–300.
Walde, P., Goto, A., Monnard, P.-A., Wessicken, M., Luisi, P.L. (1994a). Oparin’s reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J. Am. Chem. Soc ., 116, 7541–7547.
Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.L. (1994b). Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc ., 116, 11649–11654.
Zepik, H.H., Rajamani, S., Maurel, M.C., Deamer, D. (2007). Oligomerization of thioglutamic acid: encapsulated reactions and lipid catalysis. Orig. Life Evol. Biosph ., 37, 495–505.
1 1 Hadean: comes from the name Hades, which refers to the Greek god of the underworld.
2 2 Archean: from the ancient Greek Aρχή/Arkhē, which means “beginning, origin”.
3 3 MIT: Massachusetts Institute of Technology.
4 4 TIGR: The Institute for Genomic Research.
Andreas LOSCH
Faculty of Theology, University of Bern, Switzerland
How can we characterize the nature of life? Against other assumptions, science has shown that life is nothing but physics and chemistry, and that there is no mysterious vital force included. Still, life strikes us as special. Can we describe this by its form? What definitions of life are actually in use? Maybe we need another sort of language to describe life’s specialty.
This chapter will deal with the question of the nature of Life on Earth, so life-as-we-know it. The astrobiological quest for the search for extraterrestrial life is certainly very worthwhile to pursue, as in the case of success we would have a greater sample of life than only the one sharing common ancestry on Earth and hence would probably learn a great deal more about the laws of nature governing the emergence of life (Sagan 2010, p. 306). Does every life need to follow the “right-handed” chirality (orientation) of its molecules employed by Earth life, for instance? Does life need to be carbon-based or is this only valid for its Earthly form?
In the current absence of such further samples, I believe it, however, to be most important to stick to what we know about Earth life to attempt at understanding more of its very nature. We do not know so very much about its origins and its essence, besides that it is physics and chemistry, with an evolutionary history, for sure (Lazcano 2017b, p. 90).
Читать дальше