Trinath Sahoo - Root Cause Failure Analysis

Здесь есть возможность читать онлайн «Trinath Sahoo - Root Cause Failure Analysis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Root Cause Failure Analysis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Root Cause Failure Analysis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Root Cause Failure Analysis
Provides the knowledge and failure analysis skills necessary for preventing and investigating process equipment failures Root Cause Failure Analysis: A Guide to Improve Plant Reliability
Root Cause Failure Analysis: A Guide to Improve Plant Reliability

Root Cause Failure Analysis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Root Cause Failure Analysis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In a big petrochemical plant, the top management is religiously interested to tracks each plant for anything even slightly out of the ordinary, immediately investigates whatever turns up, and informs all its other plants of any anomalies. But many a time, these methods are not widely employed because senior executives – remain reluctant to convey bad news to bosses and colleagues.

Analyzing Failure

Most people avoid analyzing the failure altogether because many a time it is emotionally unpleasant and can chip away at our self‐esteem. Another reason is that analyzing organizational failures requires inquiry and openness, patience, and a tolerance for causal ambiguity. Hence, managers should be rewarded for thoughtful reflection. That is why the right culture can percolate in the organization.

Once a failure has been detected, it’s essential to find out the root causes not just relying on the obvious and superficial reasons. This requires the discipline to use sophisticated analysis to ensure that the right lessons are learned and the right remedies are employed. Engineers need to see that their organizations don’t just move on after a failure but stop to dig in and discover the wisdom contained in it.

A team of leading physicists, engineers, aviation experts, naval leaders, and even astronauts devoted months to an analysis of the Columbia disaster. They conclusively established not only the first‐order cause – a piece of foam had hit the shuttle’s leading edge during launch – but also second‐order causes: A rigid hierarchy and schedule‐obsessed culture at NASA made it especially difficult for engineers to speak up about anything but the most rock‐solid concerns.

Motivating people to go beyond first‐order reasons (procedures weren’t followed) to understanding the second‐ and third‐order reasons can be a major challenge. One way to do this is to use interdisciplinary teams with diverse skills and perspectives. Complex failures in particular are the result of multiple events that occurred in different departments or disciplines or at different levels of the organization. Understanding what happened and how to prevent it from happening again requires detailed, team‐based discussion, and analysis.

Here are some common root causes and their corresponding corrective actions:

Design deficiency caused failure → Revisit in‐service loads and environmental effects, modify design appropriately.

Manufacturing defect caused failure → Revisit manufacturing processes (e.g. casting, forging, machining, heat treat, coating, assembly) to ensure design requirements are met.

Material defect caused failure → Implement raw material quality control plan.

Misuse or abuse caused failure → Educate user in proper installation, use, care, and maintenance.

Useful life exceeded → Educate user in proper overhaul/replacement intervals.

There are various methods that failure analysts use – for example, Ishikawa “fishbone” diagrams, failure modes and effects analysis (FMEA), or fault tree analysis (FTA). Methods vary in approach, but all seek to determine the root cause of failure by looking at the characteristics and clues left behind.

Once the root cause of the failure has been determined, it is possible to develop a corrective action plan to prevent recurrence of the same failure mode. Understanding what caused one failure may allow us to improve upon our design process, manufacturing processes, material properties, or actual service conditions. This valuable insight may allow us to foresee and avoid potential problems before they occur in the future.

Share the Lessons

Failure is less painful when you extract the maximum value from it. If you learn from each mistake, large and small, share those lessons, and periodically check that these processes are helping your organization move more efficiently in the right direction, your return on failure will skyrocket. While it’s useful to reflect on individual failures, the real payoff comes when you spread the lessons across the organization. As one executive commented, “You need to build a review cycle where this is fed into a broader conversation.” When the information, ideas, and opportunities for improvement gained from an failure incident are passed on to another, their benefits are magnified. The information on root cause failure analysis should be made available to others in the organization so that they can learn too.

Benefits of Failure Analysis

The best way to get risk‐averse managers and employees to learn to accept higher risks and their associated failures are to educate them on the many positive aspects and benefits of failure. Some of those many benefits include:

Failure tells you what to stop doing – Obviously, failure reveals what doesn’t work, so you can avoid using similar unmodified approaches in the future. And over time, by continually eliminating failure factors, you obviously increase the probability of future success.

Failure is the best teacher – Failure is only valuable if you use it to identify what worked and what didn’t work and to use that information to minimize future failures. In the corporate and engineering worlds, learning from failure starts with failure analysis. This is a process that helps you identify specifically what failed and then to understand the “root causes” of that failure (i.e. critical failure factors). But since failure and success factors are often closely related, the identification of the failure factors will likely aid you in identifying the critical success factors that cause an approach to succeed. The famous auto innovator Henry Ford revealed his understanding of learning from failure in this quote: “The only real mistake is the one from which we learn nothing.”

A failure factor in one area may apply to another area – Failure analysis tells you what failed and why. But the best corporations develop processes that “spread the word” and warn others in your organization about what clearly doesn’t work so that others don’t need to learn the hard way. On the positive side, lessons learned from both successes and failures in one discipline may be able to be applied to another discipline or functional area.

Experience builds your capability to handle future major failures – When a major failure does occur, your “rusty” employees and your out of date processes simply won’t be able to handle it. Both the military and healthcare managers have proven that the more often you train for and work through actual major failures, the better prepared you will be when an unplanned failure occurs in the future.

Conclusion

Many companies and organizations have been on the reliability journey for a number of years. There are many elements of a solid reliability program – establishing a reliability‐centered culture, tracking key metrics, bad actor elimination programs and establishing equipment reliability plans – to name a few. But, one key element to a solid reliability program, and one that is very important to improving unit reliability metrics, is root cause failure analysis (RCFA). One of the interesting benefits of organizations that have fully embraced the RCFA work process across the entire organization is that over time the RCFA methodology starts to impact how people approach everyday problems – it becomes how they think about even the smallest failure, problems, or defects. Now the organization starts to evolve into a culture that does not accept failure and provides a mindset to help eliminate failures across the organization.

2 What Is Root Cause Analysis

It is not uncommon to see industries caught in the vicious cycle of failure, repair, blame, failure, repair, blame, etc. When there is premature failure of equipment, people involved often asked the question, whose fault it is. Many a time you will get the answer “it is other guy’s fault.”

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Root Cause Failure Analysis»

Представляем Вашему вниманию похожие книги на «Root Cause Failure Analysis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Root Cause Failure Analysis»

Обсуждение, отзывы о книге «Root Cause Failure Analysis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x