Digital Transformation of the Laboratory

Здесь есть возможность читать онлайн «Digital Transformation of the Laboratory» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Digital Transformation of the Laboratory: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Digital Transformation of the Laboratory»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This practical book in instrumental analytics conveys an overview of important methods of analysis and enables the reader to realistically learn the (principally technology-independent) working techniques the analytical chemist uses to develop methods and conduct validation. What is to be conveyed to the student is the fact that analysts in their capacity as problem-solvers perform services for certain groups of customers, i.e., the solution to the problem should in any case be processed in such a way as to be «fit for purpose». <br> The book presents sixteen experiments in analytical chemistry laboratory courses. They consist of the classical curriculum used at universities and universities of applied sciences with chromatographic procedures, atom spectrometric methods, sensors and special methods (e.g. field flow fractionation, flow injection analysis and N-determination according to Kjeldahl).<br> The carefully chosen combination of theoretical description of the methods of analysis and the detailed instructions given are what characterizes this book. The instructions to the experiments are so detailed that the measurements can, for the most part, be taken without the help of additional literature.<br> The book is complemented with tips for effective literature and database research on the topics of organization and the practical workflow of experiments in analytical laboratory, on the topic of the use of laboratory logs as well as on writing technical reports and grading them (Evaluation Guidelines for Laboratory Experiments).<br> A small introduction to Quality Management, a brief glance at the history of analytical chemistry as well as a detailed appendix on the topic of safety in analytical laboratories and a short introduction to the new system of grading and marking chemicals using the «Globally Harmonized System of Classification and Labelling of Chemicals (GHS)», round off this book.<br> This book is therefore an indispensable workbook for students, internship assistants and lecturers (in the area of chemistry, biotechnology, food technology and environmental technology) in the basic training program of analytics at universities and universities of applied sciences.<br>

Digital Transformation of the Laboratory — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Digital Transformation of the Laboratory», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Finally, an area of growing interest, which could be considered the antithesis of antimicrobial research, is that of the microbiome [99]. There is increasing recognition that the commensal bacteria and other microbes which live symbiotically in and on our bodies (mainly mucous membranes in, for example the gut and also on the skin) can play a major role in our acquisition, presentation, and the severity of certain diseases (e.g. irritable bowel syndrome, Crohn's disease, and psoriasis). Research into an individual's microbiome and treatments based on “normalization” of a person's inherent flora will grow and become more mainstream over the next few decades [100].

1.2.6.2 New Science in the Life Sciences Domain

As discussed in several of the earlier parts of this section, there is one critical, global driver which will dominate new science and how it is performed in the LotF; that key driver is climate change and the supporting concept of “sustainability”. There will be new research looking specifically into climate change and sustainability as areas of interest in themselves, but the need for the LotF, both the hypothesis‐ and the protocol‐driven lab, to be more sustainable, less dependent on oil and oil‐based products, and yet be more efficient, will become paramount in the decades to come. Labs that do “chemistry” will be a primary focus for these developments, but biology‐focused labs will not be immune. The pressure to be more environmentally friendly, using fewer reagents and disposable materials, will lead to new research to discover, for example effective replacements for all the lab plastics currently used; greener chemistry (use of less‐toxic solvents and reagents); greater use of catalysts; and more use of biological systems to perform complex chemical transformations. None of these examples are exactly new, but their importance and greater use in the LotF will be significant.

Just as the next generation of scientists is exquisitely conscious of the environment, so too is it particularly focused on animal welfare. The ever‐growing drive toward minimization of the use of animals in research and product testing, while it can never in truth be completely eliminated, will continue to accelerate. Initiatives such as the “3Rs” [101] looking to replace, reduce, and refine the use of animals in the lab will gain more traction [102]. In vitro approaches to meet the goals of the 3Rs will include developments such as organ‐on‐a‐chip [103] and the increasing use of stem cells. These new methods will become widespread in the LotF.

Finally, there is one lab technique, which has been a mainstay of the lab for hundreds of years, yet is still undergoing significant evolution and is likely to feature significantly in the LotF: microscopy. Advances in traditional imaging revolutionized life sciences over a decade ago, but current developments in microscopy are likely to transform utterly how in the future we perceive “things” both at the molecular and macromolecular levels. There are two specific examples, which we feel are worth mentioning here: firstly, the scanning tunneling microscope (STM) [104] and secondly, the cryo‐electron microscope (cryo‐EM) [105]. STM and other comparable new microscopy techniques [106] have the potential to take to an even higher level our ability to study cells, solid‐state materials, and many other surfaces. STM has clear potential applications in biology, chemistry, surface science, and solid‐state physics [107]. The STM, which operates through the principles of quantum tunneling, utilizes the wavelike properties of electrons, allowing them to “tunnel” beyond the surface of a solid into regions of space that are normally forbidden under the rules of classical physics. While the use of STM has been focused mainly on physicochemical and solid‐state challenges, increasingly scientists are looking at STM as a means to see more deeply into chemical and biochemical systems, right down to the atomic level [108]. Cryo‐EM is the electron microscopic imaging of rapidly frozen molecules and crystals in solution. It demonstrates its main benefits at the macromolecular level, enabling scientists to see the fine structures of proteins, nucleic acids, and other biomolecules, and even to study how they move and change as they perform their functions, but without having to use the intense electron beams and high vacuum conditions used in traditional electron microscopy [109].

1.2.6.3 Other Important New Science Areas

We have asserted throughout this section that the driver of climate change and the push to greater sustainability will dramatically affect how the LotF will look, and what will take place within it. In a final piece of speculation on what new science will be taking place in these future labs, we suggest two research areas, which we believe will occupy a great deal of time and effort in labs over the next 10–20 years. These two areas are carbon (actually carbon dioxide) fixing and sequestration [110], and R&D around new battery technology, particularly new technologies which avoid the use of heavy metals [111]. The scientists working in or near the LotFs will do a great disservice to their descendants and to the planet if they do not research these critical areas.

1.3 Thoughts on LotF Implementation

The lab environment is changing – this is certain. New and existing science demands combined with critical issues of data management and reproducibility will require a strategic direction to be set and then deployed. It will be important for lab managers to identify what they want to achieve by employing the new approaches of AI, quantum computing, and advanced automation technology. Business ambition and needs, and the assessment of the maturity of organizations beyond the lab environment in the context of initiatives such as FAIR data, will need to be investigated as a matter of urgency to help drive lab of the future decision‐making. With such a pace of change it will be important to “think big” as well as be practical during implementation. Thinking in expansive terms, organizations must consider all the opportunities on offer within the key areas of technology, data, people, and process to highlight possible future visions and ways of working. They should use scenario planning to explore, influence, plan for, and manage the future. These scenarios will perhaps be most effective when they are personalized to the organization, function, lab, or team's future, rather than to a generic vision. The benefit of running pilots prior to fuller implementation in the LotF cannot be overstated. Small LotF pilots will allow experimentation across the broad themes. These will reveal what works and what needs adjustment based on the key lab environments. The successful use cases can result in new designs, collaborations, future partnering with technology groups, and new predictive models to support experiments in a timely manner. Moving beyond these smaller pilots and the learnings from them will help catalyze organizational change to support a lab environment that can adapt to new science and get the most from data, digital technology, and AI‐driven transformations. All these changes will present new business opportunities, the chance for new relationships with vendors, and the need for new business partners. They will also present opportunities for all lab colleagues to take part in the transformation and to take on new roles and skills to support the implementation and future impact.

1.4 Conclusion

In this section we have endeavored to show how the LotF will potentially evolve, using five main areas as a focus for those possible changes and developments: (i) the people and organizational culture aspects; (ii) the process components; (iii) the LotF environment and design; (iv) the data management challenges; and (v) the new technologies and the new science which will take place in those LotFs. In this concluding section, we would like to pick out just a few key messages from each of these areas to highlight the promise and the challenge that “LotF” presents.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Digital Transformation of the Laboratory»

Представляем Вашему вниманию похожие книги на «Digital Transformation of the Laboratory» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Digital Transformation of the Laboratory»

Обсуждение, отзывы о книге «Digital Transformation of the Laboratory» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x