Biomedical Data Mining for Information Retrieval

Здесь есть возможность читать онлайн «Biomedical Data Mining for Information Retrieval» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biomedical Data Mining for Information Retrieval: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biomedical Data Mining for Information Retrieval»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient's data, electronic health records (EHRs) and lifestyle. Previously it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical Image Mining, a novel research area, due to its large amount of biomedical images increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients' biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients.

Biomedical Data Mining for Information Retrieval — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biomedical Data Mining for Information Retrieval», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

61. Andreeva, A., Howorth, D., Chothia, C., Kulesha, E., Murzin, A.G., SCOP2 prototype: A new approach to protein structure mining. Nucleic Acids Res. , 42, 310–314, 2014. [CrossRef] [PubMed].

62. Sillitoe, I., Lewis, T.E., Cuff, A., Das, S., Ashford, P., Dawson, N.L., Furnham, N., Laskowski, R.A., Lee, D., Lees, J.G., Cath: Comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. , 43, 376– 381, 2015.

63. Karplus, K., Barrett, C., Hughey, R., Hidden Markov models for detecting remote protein homologies. Bioinfo. , 14, 10, 846–856, 1998.

64. Eddy, S.R., Profile hidden Markov models. Bioinfo. , 14, 755–763, 1998.

65. Soeding, J., Protein homology detection by HMM–HMM comparison. Bioinfo. , 21, 951–960, 2005.

66. Rost, B. and Sander, C., Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. , 232, 2, 584–599, 1993, https://doi.org/10.1006/jmbi.1993.1413.

67. Rost, B., PHD: Predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol. , 266, 525–539, 1996, https://doi.org/10.1016/s0076-6879(96)66033-9.

68. Jones, D.T., Protein secondary structure prediction based on positionspecific scoring matrices. J. Mol. Biol. , 292, 2, 195–202, 1999.

69. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlaym, M., Barton, G.J., JPred: A consensus secondary structure prediction server. Bioinformatics , 14, 10, 892– 893, 1998.

70. LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature , 521, 7553, 436–444, 2015.

71. Zhu, J., Wang, S., Bu, D., Xu, J., Protein threading using residue covariation and deep learning. Bioinformatics , 34, 13, i263–i273, 2018.

72. Xu, J. and Wang, S., Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins , 87, 12, 1069–1081, 2019, https://doi.org/10.1002/prot.25810.

73. Xu, J., Distance-based protein folding powered by deep learning. Proc. Natl. Acad. Sci. U.S.A. , 116, 34, 16856–16865, 2019.

74. Greener, J.G., Kandathil, S.M., Jones, D.T., Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Nat. Commun. , 10, 3977, 2019.

75. Senior, A.W., Evans, R., Jumper, J. et al. , Protein structure prediction using multiple deep neural networks in CASP13. Proteins , 87, 12, 1041–1048, 2019, https://doi.org/10.1002/prot.25834. [2] Cao, R., Freitas, C., Chan, L., Sun, M., Jiang, H., Chen, Z., ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network. Molecules , 22, 10, 1732, 2017.

76. Qiu, J., Sheffler, W., Baker, D., Noble, W.S., Ranking predicted protein structures with support vector regression. Proteins , 71, 1175–1182, 2007.

77. Joo, H. and Tsai, J., An amino acid code for β -sheet packing structure. Proteins: Structure, Function, and Bioinformatics , Volume 82 (9) – Sep. 1, 2014.

78. Crick, F.H., The packing of α -helices: simple coiled-coils. Acta Crystallogr. , 6, 689–697, 1953.

79. von Mering, C., Krause, R., Sne, B. et al. , Comparative assessment of large scale data sets of protein–protein interactions. Nature , 417, 6887, 399–403, 2002.

80. Hakes, L., Lovell, S.C., Oliver, S.G. et al. , Specificity in protein interactions and its relationship with sequence diversity and coevolution. PNAS , 104, 19, 7999–8004, 2007.

81. Harwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W., From molecular to modular cell biology. Nature , 402, c47–c52, 999.

82. Jeong, H., Mason, S., Barabási, A.L. et al. , Lethality and centrality in protein networks. Nature , 411, 6833, 41–42, 2001.

83. Giot, L. et al. , A protein interaction map of Drosophila melanogaster . Science , 302, 1727–1736, 2003.

84. Li, S., Armstrong, C., Bertin, N., A map of the interactome network of the metazoan. Science , 303, 5657, 540–543, 2004.

85. Wuchty, S., Scale-free behavior in protein domain networks. Mol. Biol. Evol. , 18, 9, 1694–1702, 2001.

86. del Sol, A. and O’Meara, P., Small-world network approach to identify key residues in protein–protein interaction. Proteins , 58, 3, 672–682, 2004.

87. del Sol, A., Fujihashi, H., O’Meara, P., Topology of small-world networks of protein–protein complex structures. Bioinformatics , 21, 8, 1311–131, 2005.

88. Brohée, S. and van Helden, J., Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinf. , 7, 48, 2006.

89. Spirin, V. and Mirny, L.A., Protein complexes and functional modules in molecular networks. PNAS , 100, 12123–12128, 2003.

90. Bu, D., Zhao, Y., Cai, L. et al. , Topological structure analysis of the protein– protein interaction network in budding yeast. Nucleic Acids Res. , 31, 9, 2443– 2450, 2003.

91. Nicolas, J., Artificial intelligence and bioinformatics. 2018, https://doi.org/10.1007/978-3-030-06170-8_7.

92. Dimova, D. and Bajorath, J., Advances in activity cliff research. Mol. Inf. , 35, 5, 181–191, 2016.

93. Stumpfe, D., Hu, H., Bajorath, J., Evolving Concept of Activity Cliffs. ACS Omega , 4, 11, 14360–14368, 2019, Published 2019 Aug 26.

94. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J., Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discovery , 3, 11, 935, 2004.

95. Ferreira, L.G., dos Santos, R.N., Oliva, G., Andricopulo, A.D., Molecular docking and structure-based drug design strategies. Molecules , 20, 7, 13384– 13421, 2015.

96. Dos Santos, R.N., Ferreira, L.G., Andricopulo, A.D., Practices in Molecular Docking and Structure-Based Virtual Screening. Methods Mol. Biol. (Clifton, N.J.) , 1762 , 31–50, 2018, https://doi.org/10.1007/978-1-4939-7756-7_3.

97. Brown, J.B., Niijima, S., Okuno, Y., Compound–Protein Interaction Prediction Within Chemogenomics: Theoretical Concepts, Practical Usage, and Future Directions. Mol. Inf. , 32, 906–921, 2013.

98. Qiu, T., Qiu, J., Feng, J., Wu, D., Yang, Y., Tang, K., Cao, Z., Zhu, R., The recent progress in proteochemometric modelling: Focusing on target descriptors, cross-term descriptors and application scope. Brief Bioinform. , 18, 1, 125– 136, 2017.

99. Jackson, M.J., Esnouf, M.P., Winzor, D., Duewer, D., Defining and measuring biological activity: Applying the principles of metrology. Accredit. Qual. Assur. , 12, 6, 283–29, 2007, https://doi.org/10.1007/s00769-006-0254-1.

100. Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., Zhao, S., Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discovery , 18 , 6, 463–477, 2019, https://doi.org/10.1038/s41573-019-0024-5.

101. Sidey-Gibbons, J. and Sidey-Gibbons, C.J., Machine learning in medicine: A practical introduction. BMC Med. Res. Method. , 19 , 1, 64, 2019, https://doi.org/10.1186/s12874-019-0681-4.

102. Greene, N., Judson, P.N., Langowski, J.J., Marchantm, C.A., Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ. Res. , 10, 2–3, 299–314, 1999.

103. Raies, A.B. and Bajic, V.B., In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. , 6 , 2, 147–172, 2016, https://doi.org/10.1002/wcms.1240.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biomedical Data Mining for Information Retrieval»

Представляем Вашему вниманию похожие книги на «Biomedical Data Mining for Information Retrieval» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biomedical Data Mining for Information Retrieval»

Обсуждение, отзывы о книге «Biomedical Data Mining for Information Retrieval» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x