Albert Chun-Chen Liu - Artificial Intelligence Hardware Design

Здесь есть возможность читать онлайн «Albert Chun-Chen Liu - Artificial Intelligence Hardware Design» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence Hardware Design: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence Hardware Design»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE HARDWARE DESIGN
Learn foundational and advanced topics in Neural Processing Unit design with real-world examples from leading voices in the field Artificial Intelligence Hardware Design: Challenges and Solutions
Artificial Intelligence Hardware Design

Artificial Intelligence Hardware Design — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence Hardware Design», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Oscar currently works at Kneron for in‐memory computing and smart robot development. He has worked at ATI Technologies, AMD, TSMC, and Qualcomm and led various groups for chip verification, standard cell design, signal integrity, power analysis, and Design for Manufacturability (DFM). He has conducted different seminars at the University of California, San Diego, University of Toronto, Qualcomm, and TSMC. He has also published over 60 patents in various areas.

Preface

With the breakthrough of the Convolutional Neural Network (CNN) for image classification in 2012, Deep Learning (DL) has successfully solved many complex problems and widely used in our everyday life, automotive, finance, retail, and healthcare. In 2016, Artificial Intelligence (AI) exceeded human intelligence that Google AlphaGo won the GO world championship through Reinforcement Learning (RL). AI revolution gradually changes our world, like a personal computer (1977), Internet (1994), and smartphone (2007). However, most of the efforts focus on software development rather than hardware challenges:

Big input data

Deep neural network

Massive parallel processing

Reconfigurable network

Memory bottleneck

Intensive computation

Network pruning

Data sparsity

This book shows how to resolve the hardware problems through various design ranging from CPU, GPU, TPU to NPU. Novel hardware can be evolved from those designs for further performance and power improvement:

Parallel architecture

Streaming Graph Theory

Convolution optimization

In‐memory computation

Near‐memory architecture

Network sparsity

3D neural processing

Organization of the Book

Chapter 1introduces neural network and discusses neural network development history.

Chapter 2reviews Convolutional Neural Network (CNN) model and describes each layer functions and examples.

Chapter 3lists out several parallel architectures, Intel CPU, Nvidia GPU, Google TPU, and Microsoft NPU. It emphasizes hardware/software integration for performance improvement. Nvidia Deep Learning Accelerator (NVDLA) open‐source project is chosen for FPGA hardware implementation.

Chapter 4introduces a streaming graph for massive parallel computation through Blaize GSP and Graphcore IPU. They apply the Depth First Search (DFS) for task allocation and Bulk Synchronous Parallel Model (BSP) for parallel operations.

Chapter 5shows how to optimize convolution with the University of California, Los Angeles (UCLA) Deep Convolutional Neural Network (DCNN) accelerator filter decomposition and Massachusetts Institute of Technology (MIT) Eyeriss accelerator Row Stationary dataflow.

Chapter 6illustrates in‐memory computation through Georgia Institute of Technologies Neurocube and Stanford Tetris accelerator using Hybrid Memory Cube (HMC) as well as University of Bologna Neurostream accelerator using Smart Memory Cubes (SMC).

Chapter 7highlights near‐memory architecture through the Institute of Computing Technology (ICT), Chinese Academy of Science, DaDianNao supercomputer and University of Toronto Cnvlutin accelerator. It also shows Cnvlutin how to avoid ineffectual zero operations.

Chapter 8chooses Stanford Energy Efficient Inference Engine, Institute of Computing Technology (ICT), Chinese Academy of Science Cambricon‐X, Massachusetts Institute of Technology (MIT) SCNN processor and Microsoft SeerNet accelerator to handle network sparsity.

Chapter 9introduces an innovative 3D neural processing with a network bridge to overcome power and thermal challenges. It also solves the memory bottleneck and handles the large neural network processing.

In English edition, several chapters are rewritten with more detailed descriptions. New deep learning hardware architectures are also included. Exercises challenge the reader to solve the problems beyond the scope of this book. The instructional slides are available upon request.

We shall continue to explore different deep learning hardware architectures (i.e. Reinforcement Learning) and work on a in‐memory computing architecture with new high‐speed arithmetic approach. Compared with the Google Brain floating‐point (BFP16) format, the new approach offers a wider dynamic range, higher performance, and less power dissipation. It will be included in a future revision.

Albert Chun Chen Liu

Oscar Ming Kin Law

Acknowledgments

First, we would like to thank all who have supported the publication of the book. We are thankful to Iain Law and Enoch Law for the manuscript preparation and project development. We would like to thank Lincoln Lee and Amelia Leung for reviewing the content. We also thank Claire Chang, Charlene Jin, and Alex Liao for managing the book production and publication. In addition, we are grateful to the readers of the Chinese edition for their valuable feedback on improving the content of this book. Finally, we would like to thank our families for their support throughout the publication of this book.

Albert Chun Chen Liu

Oscar Ming Kin Law

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence Hardware Design»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence Hardware Design» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence Hardware Design»

Обсуждение, отзывы о книге «Artificial Intelligence Hardware Design» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x