1 Chapter 1 Table 1.1 Confusion matrix. Table 1.2 Social media reviews for healthcare service (DS1). Table 1.3 Number of reviews of features and hospitals (DS1). Table 1.4 List of top five terms by LDA model. Table 1.5 Sample correlated terms selected by CFS LDA. Table 1.6 List of correlated feature terms selected by CFS LDAmodel. Table 1.7 Performance evaluation.
2 Chapter 2 Table 2.1 Growth of data [15].
3 Chapter 4Table 4.1 List of popular biomedical ontologies.Table 4.2 List of popular biomedical libraries.
4 Chapter 7Table 7.1 The table shows counts of complications that were encountered intra- a...
5 Chapter 9Table 9.1 Different terms used in computational examination [13].Table 9.2 Examples for interoperability standards and ontologies commonly used i...Table 9.3 Resources and applications in human phenotype ontology contexts.
6 Chapter 10Table 10.1 Contingency matrix of positives and negatives.
7 Chapter 11Table 11.1 Patients characteristics in the final dataset (n = 829).Table 11.2 ADL disabilities patients before and after cancer diagnosis.Table 11.3 Q (R, w*), rule for ADL.
8 Chapter 12Table 12.1 List of various diagnostic tools with their webpages [6].
9 Chapter 14Table 14.1 Three-stage model of application of AI for patients in critical care.
1 v
2 ii
3 iii
4 iv
5 xv
6 xvi
7 xvii
8 xviii
9 xix
10 1
11 2
12 3
13 4
14 5
15 6
16 7
17 8
18 9
19 10
20 11
21 12
22 13
23 14
24 15
25 16
26 17
27 18
28 19
29 20
30 21
31 22
32 23
33 24
34 25
35 26
36 27
37 28
38 29
39 30
40 31
41 32
42 33
43 34
44 35
45 36
46 37
47 39
48 40
49 41
50 42
51 43
52 44
53 45
54 46
55 47
56 48
57 49
58 50
59 51
60 52
61 53
62 54
63 55
64 56
65 57
66 58
67 59
68 60
69 61
70 62
71 63
72 64
73 65
74 66
75 67
76 68
77 69
78 70
79 71
80 72
81 73
82 75
83 76
84 77
85 78
86 79
87 80
88 81
89 82
90 83
91 84
92 85
93 86
94 87
95 88
96 89
97 90
98 91
99 92
100 93
101 95
102 96
103 97
104 98
105 99
106 100
107 101
108 102
109 103
110 104
111 105
112 106
113 107
114 108
115 109
116 110
117 111
118 112
119 113
120 115
121 116
122 117
123 118
124 119
125 120
126 121
127 122
128 123
129 124
130 125
131 126
132 127
133 128
134 129
135 130
136 131
137 132
138 133
139 134
140 135
141 136
142 137
143 138
144 139
145 140
146 141
147 142
148 143
149 144
150 145
151 146
152 147
153 148
154 149
155 150
156 151
157 152
158 153
159 154
160 155
161 156
162 157
163 159
164 160
165 161
166 162
167 163
168 164
169 165
170 166
171 167
172 168
173 169
174 170
175 171
176 172
177 173
178 174
179 175
180 176
181 177
182 178
183 179
184 180
185 181
186 182
187 183
188 184
189 185
190 186
191 187
192 188
193 189
194 191
195 192
196 193
197 194
198 195
199 196
200 197
201 198
202 199
203 200
204 201
205 202
206 203
207 204
208 205
209 206
210 207
211 208
212 209
213 210
214 211
215 212
216 213
217 215
218 216
219 217
220 218
221 219
222 220
223 221
224 222
225 223
226 224
227 225
228 226
229 227
230 228
231 229
232 230
233 231
234 232
235 233
236 234
237 235
238 236
239 237
240 238
241 239
242 240
243 241
244 242
245 243
246 244
247 245
248 246
249 247
250 249
251 250
252 251
253 252
254 253
255 254
256 255
257 256
258 257
259 258
260 259
261 260
262 261
263 262
264 263
265 264
266 265
267 266
268 267
269 269
270 270
271 271
272 272
273 273
274 274
275 275
276 276
277 277
278 278
279 279
280 280
281 281
282 282
283 283
284 284
285 285
286 286
287 287
288 288
289 289
290 290
291 291
292 292
293 293
294 294
295 295
296 296
297 297
298 298
299 299
300 300
301 301
302 302
303 303
304 304
305 305
306 306
307 307
308 308
309 309
310 310
311 311
312 312
313 313
314 314
315 315
316 316
317 317
318 318
319 319
320 320
321 321
322 322
323 323
324 325
325 326
326 327
327 328
328 329
329 330
330 331
331 332
332 333
Scrivener Publishing100 Cummings Center, Suite 541J Beverly MA, 01915-6106
Machine Learning in Biomedical Science and Healthcare Informatics
Series Editors: Vishal Jain and Jyotir Moy Chatterjee
In this series, the focus centers on the various applications of machine learning in the biomedical engineering and healthcare fields, with a special emphasis on the most representative learning techniques, namely deep learning-based approaches. Machine learning tasks typically classified into two broad categories depending on whether there is a learning “label” or “feedback” available to a learning system: supervised learning and unsupervised learning. This series also introduces various types of machine learning tasks in the biomedical engineering field from classification (supervised learning) to clustering (unsupervised learning). The objective of the series is to compile all aspects of biomedical science and healthcare informatics, from fundamental principles to current advanced concepts.
Submission to the series: Please send book proposals to drvishaljain83@gmail.com and/or jyotirchatterjee@gmail.com
Publishers at Scrivener Martin Scrivener ( martin@scrivenerpublishing.com) Phillip Carmical ( pcarmical@scrivenerpublishing.com)
Semantic Web for Effective Healthcare
Edited by
Vishal Jain
Sharda University, India
Jyotir Moy Chatterjee
Lord Buddha Education Foundation, Nepal
Ankita Bansal
Netaji Subhas University of Technology, India
and
Abha Jain
Shaheed Rajguru College of Applied Sciences for Women, Delhi University, India
This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA
Читать дальше