Machine Learning Techniques and Analytics for Cloud Security

Здесь есть возможность читать онлайн «Machine Learning Techniques and Analytics for Cloud Security» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning Techniques and Analytics for Cloud Security: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning Techniques and Analytics for Cloud Security»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY
This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions
Audience The aim of Machine Learning Techniques and Analytics for Cloud Security

Machine Learning Techniques and Analytics for Cloud Security — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning Techniques and Analytics for Cloud Security», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

346 349

347 350

348 351

349 352

350 353

351 354

352 355

353 357

354 358

355 359

356 360

357 361

358 362

359 363

360 364

361 365

362 366

363 367

364 368

365 369

366 370

367 371

368 372

369 373

370 374

371 375

372 376

373 377

374 379

375 381

376 382

377 383

378 384

379 385

380 386

381 387

382 388

383 389

384 390

385 391

386 392

387 393

388 394

389 395

390 396

391 397

392 398

393 399

394 400

395 401

396 402

397 403

398 404

399 405

400 406

401 407

402 408

403 409

404 410

405 411

406 412

407 413

408 414

409 415

410 417

411 418

412 419

413 420

414 421

415 422

416 423

417 424

418 425

419 426

420 427

421 428

422 429

423 430

424 431

425 432

426 433

427 434

428 435

429 436

430 437

431 438

432 439

433 440

434 441

435 442

436 443

437 444

Scrivener Publishing100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Advances in Learning Analytics for Intelligent Cloud-IoT Systems

Series Editor: Dr. Souvik Pal and Dr. Dac-Nhuong Le

The role of adaptation, learning analytics, computational Intelligence, and data analytics in the field of cloud-IoT systems is becoming increasingly essential and intertwined. The capability of an intelligent system depends on various self-decision-making algorithms in IoT devices. IoT-based smart systems generate a large amount of data (big data) that cannot be processed by traditional data processing algorithms and applications. Hence, this book series involves different computational methods incorporated within the system with the help of analytics reasoning and sense-making in big data, which is centered in the cloud and IoT-enabled environments. The series publishes volumes that are empirical studies, theoretical and numerical analysis, and novel research findings.

Submission to the series:

Please send proposals to Dr. Souvik Pal, Department of Computer Science and Engineering, Global Institute of Management and Technology, Krishna Nagar, West Bengal, India.

E-mail: souvikpal22@gmail.com

Publishers at Scrivener

Martin Scrivener ( martin@scrivenerpublishing.com)

Phillip Carmical ( pcarmical@scrivenerpublishing.com)

Machine Learning Techniques and Analytics for Cloud Security

Edited by

Rajdeep Chakraborty

Anupam Ghosh

and

Jyotsna Kumar Mandal

This edition first published 2022 by John Wiley Sons Inc 111 River Street - фото 1

This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

© 2022 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-76225-6

Cover images: Pixabay.Com

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Preface

Our objective in writing this book was to provide the reader with an in-depth knowledge of how to integrate machine learning (ML) approaches to meet various analytical issues in cloud security deemed necessary due to the advancement of IoT networks. Although one of the ways to achieve cloud security is by using ML, the technique has long-standing challenges that require methodological and theoretical approaches. Therefore, because the conventional cryptographic approach is less frequently applied in resource-constrained devices, the ML approach may be effectively used in providing security in the constantly growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues for effective intrusion detection and zero-knowledge authentication systems. Moreover, these algorithms can also be used in applications and for much more, including measuring passive attacks and designing protocols and privacy systems. This book contains case studies/projects for implementing some security features based on ML algorithms and analytics. It will provide learning paradigms for the field of artificial intelligence and the deep learning community, with related datasets to help delve deeper into ML for cloud security.

This book is organized into five parts. As the entire book is based on ML techniques, the three chapters contained in “Part I: Conceptual Aspects of Cloud and Applications of Machine Learning,” describe cloud environments and ML methods and techniques. The seven chapters in “Part II: Cloud Security Systems Using Machine Learning Techniques,” describe ML algorithms and techniques which are hard coded and implemented for providing various security aspects of cloud environments. The four chapters of “Part III: Cloud Security Analysis Using Machine Learning Techniques,” present some of the recent studies and surveys of ML techniques and analytics for providing cloud security. The next three chapters in “Part IV: Case Studies Focused on Cloud Security,” are unique to this book as they contain three case studies of three cloud products from a security perspective. These three products are mainly in the domains of public cloud, private cloud and hybrid cloud. Finally, the two chapters in “Part V: Policy Aspects,” pertain to policy aspects related to the cloud environment and cloud security using ML techniques and analytics. Each of the chapters mentioned above are individually highlighted chapter by chapter below.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning Techniques and Analytics for Cloud Security»

Представляем Вашему вниманию похожие книги на «Machine Learning Techniques and Analytics for Cloud Security» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning Techniques and Analytics for Cloud Security»

Обсуждение, отзывы о книге «Machine Learning Techniques and Analytics for Cloud Security» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x