Handbook of Intelligent Computing and Optimization for Sustainable Development

Здесь есть возможность читать онлайн «Handbook of Intelligent Computing and Optimization for Sustainable Development» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Intelligent Computing and Optimization for Sustainable Development: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Intelligent Computing and Optimization for Sustainable Development»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT
This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries.
Audience Handbook of Intelligent Computing and Optimization for Sustainable Development

Handbook of Intelligent Computing and Optimization for Sustainable Development — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Intelligent Computing and Optimization for Sustainable Development», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.3.3.2 Pose Estimation

We determine the coordinates of a person’s wrists using a state-of-the-art pose estimation framework, OpenPose [10]. OpenPose is the first real-time 2D multi-person human pose estimation framework that achieves the tasks of jointly detecting the human body, hand, face, and foot-related key points from a single image. The OpenPose framework identifies a total of 135 feature points in the detected human. This is accomplished using a multi-stage Convolutional Neural Network (CNN) that uses a nonparametric representation called Part Affinity Fields (PAFs) to learn how to associate the body parts with the corresponding humans in the image. The OpenPose multi-stage CNN architecture has three crucial steps:

1 1. The first set of stages predicts the PAFs from the input feature map.

2 2. The second set of stages utilizes the PAFs from the previous layers to refine the prediction of confidence maps detection.

3 3. The final set of detected PAFs and Confidence Maps are passed into a greedy algorithm, which approximates the global solution, by displaying the various key points in the given input image.

The architecture of the CNN used in OpenPose consists of a convolution step that utilizes two consecutive 3×3 convolutional kernels. The convolution is performed in order to reduce the number of computations. Additionally, the output of each of the aforementioned convolutional kernels is concatenated, producing the basic convolution step in the multistage CNN. Before passing the input image (in RGB color space) to the first stage of the network, the image is passed through the first 10 layers of the VGG-19 network to generate a set of feature maps. These feature maps are then passed through the multi-stage CNN pipeline to generate Part Confidence Maps and PAF. A confidence map is a 2D representation of the belief that a given body part can be located in a given pixel of the input image. PAF is a set of 2D vector fields that encodes the orientation and the location of body parts in a given image.

We use the OpenPose framework’s “BODY_25” pose model to extract the spatial coordinates of both wrist landmarks, PL ( x , y ) and PR ( x , y ), of a person denoted by keypoints 4 and 7, respectively, as shown in Figure 3.3.

Figure 33 Keypoints for pose output 10 3333 Calculation of Confidence - фото 68

Figure 3.3 Keypoints for pose output [10].

3.3.3.3 Calculation of Confidence Score

We determine the confidence score ( C ) which indicates the extent to which the given active garment is a garment of interest for a given customer. In order to accomplish this, we first calculate the Area of the active garment ( AAG ), whose top-left and bottom-right spatial coordinates are denoted as AGTL ( x , y ) and AGBR ( x , y ), respectively, using Equation (3.1).

(3.1) Then we determine the minimum Euclidean distance D between the centroid of - фото 69

Then, we determine the minimum Euclidean distance ( D ) between the centroid of the active garment AGC ( x , y )) and the coordinates of the two wrists of a person using Equations (3.2)and (3.3).

(3.2) 33 Finally we calculate the confidence score C for determining the - фото 70

(3.3) Finally we calculate the confidence score C for determining the extent to - фото 71

Finally, we calculate the confidence score ( C ) for determining the extent to which the given active garment is a garment of interest using Equation (3.4).

(3.4) The confidence score C is calculated for each pairwise distinct set of - фото 72

The confidence score ( C ) is calculated for each pair-wise distinct set of detected person’s wrists and active garment where the highest score is retained for that active garment . If this confidence score exceeds a specified confidence threshold (δ), then the active garment in consideration is considered to be a garment of interest to the given customer as his/her wrist landmarks are in close proximity with the garment. The proposed approach also notes the time duration for which such interaction takes place by keeping track of the number of frames for which the active garment is a garment of interest for the given customer.

3.4 Experimental Results

In this section, we discuss the results of our proposed approach on the garment dataset. The experiments were conducted on a device with IntelⓇ Core i7-8750H 2.20 GHz CPU, NVIDIA RTX 2070 with 8 GB VRAM, and 16 GB DDR4 RAM. Additionally, some programs were computed on Google Colab [21] with IntelⓇ XeonⓇ 2.00 GHz CPU, NVIDIA Tesla T4 GPU, 16 GB GDDR6 VRAM, and 13 GB RAM. The programs were written in Python 3.6 and utilized OpenCV 4.2.0 and OpenPose 1.6.0.

3.4.1 Dataset Used

The dataset used to evaluate the proposed approach is a collection of video surveillance footage of an Indian garment store. The videos capture the interaction between the salesperson and the customers while selecting a garment for purchase. The videos are obtained from a CCTV camera in the store’s infrastructure, thus enabling us to work on real-life surveillance videos that have practical illumination conditions and background noise. The raw videos in the dataset have a resolution of 944 × 576 pixels. These videos were pre-processed to have a resolution of 1,920 × 1,080 pixels and a consistent frame rate of 30 FPS before computation. There a total of 33 videos in the dataset with an average duration of 1 minute. Among these videos, 22 videos contain a single customer, 8 videos contain two customers, and 3 videos contain three or more customers. Thus, the chosen dataset represents practical conditions and is adequately diverse. Figure 3.4illustrates a few samples from the dataset.

3.4.2 Experimental Results and Statistics

The proposed approach was evaluated by measuring the effectiveness of the detection of active garments and the identification of garments of interest .

Figure 34 Samples from the dataset Table 32 Precision and recall of active - фото 73

Figure 3.4 Samples from the dataset.

Table 3.2 Precision and recall of active garment detection.

Precision (%) Recall (%)
87.36 85.92

The effectiveness of active garment detection was evaluated by measuring its precision and recall , which are shown in Table 3.2. These metrics have been calculated as follows:

(3.5) 36 where TP TN FP and FN denote the true positive true negative - фото 74

(3.6) where TP TN FP and FN denote the true positive true negative false - фото 75

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Intelligent Computing and Optimization for Sustainable Development»

Представляем Вашему вниманию похожие книги на «Handbook of Intelligent Computing and Optimization for Sustainable Development» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Intelligent Computing and Optimization for Sustainable Development»

Обсуждение, отзывы о книге «Handbook of Intelligent Computing and Optimization for Sustainable Development» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x