Hubert Osterle - Corporate Data Quality

Здесь есть возможность читать онлайн «Hubert Osterle - Corporate Data Quality» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Corporate Data Quality: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Corporate Data Quality»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Data is the foundation of the digital economy. Industry 4.0 and digital services are producing so far unknown quantities of data and make new business models possible. Under these circumstances, data quality has become the critical factor for success. This book presents a holistic approach for data quality management and presents ten case studies about this issue. It is intended for practitioners dealing with data quality management and data governance as well as for scientists. The book was written at the Competence Center Corporate Data Quality (CC CDQ) in close cooperation between researchers from the University of St. Gallen and Fraunhofer IML as well as many representatives from more than 20 major corporations.
Chapter 1 introduces the role of data in the digitization of business and society and describes the most important business drivers for data quality. It presents the Framework for Corporate Data Quality Management and introduces essential terms and concepts.
Chapter 2 presents practical, successful examples of the management of the quality of master data based on ten cases studies that were conducted by the CC CDQ. The case studies cover every aspect of the Framework for Corporate Data Quality Management.
Chapter 3 describes selected tools for master data quality management. The three tools have been distinguished through their broad applicability (method for DQM strategy development and DQM maturity assessment) and their high level of innovation (Corporate Data League).
Chapter 4 summarizes the essential factors for the successful management of the master data quality and provides a checklist of immediate measures that should be addressed immediately after the start of a data quality management project. This guarantees a quick start into the topic and provides initial recommendations for actions to be taken by project and line managers.
Please also check out the book's homepage at cdq-book.org/

Corporate Data Quality — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Corporate Data Quality», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.6.4 Insights. 113

2.6.5 Additional Reference Material 114

2.7 Johnson & Johnson: Institutionalization of Master Data Management in the Consumer Goods Industry. 114

2.7.1 Overview of the Company. 114

2.7.2 Initial Data Management Situation in the Consumer Products Division and Activities up to 2008. 115

2.7.3 Introduction of Data Governance. 116

2.7.4 Current Situation.. 118

2.7.5 Insights. 122

2.7.6 Additional Reference Material 124

2.8 Lanxess: Business Intelligence and Master Data Management at a Specialty Chemicals Manufacturer. 125

2.8.1 Overview of the Company. 125

2.8.2 Initial Data Management Situation and Business Intelligence 2004 – 2011 126

2.8.3 Master Data Management at Lanxess since 2011. 126

2.8.4 Structure of the Strategic Reporting System since 2012. 129

2.8.5 Insights. 133

2.8.6 Additional Reference Material 135

2.9 Shell: Data Quality in the Product Lifecycle in the Mineral Oil Industry 135

2.9.1 Overview of the Company. 135

2.9.2 Initial Situation and Rationale for Action.. 136

2.9.3 Universal Management of Data in Product Lifecycle. 137

2.9.4 Challenges during Implementation.. 137

2.9.5 Using the New Solution.. 138

2.9.6 Insights. 139

2.9.7 Additional Reference Material 139

2.10 Syngenta: Outsourcing Data Management Tasks in the Crop Protection Industry 140

2.10.1 Overview of the Company. 140

2.10.2 Initial Situation and Goals of the Master Data Management Initiative 141

2.10.3 The Transformation Project and the MDM Design Principles 143

2.10.4 Master Data Management Organizational Structure. 145

2.10.5 The Data Maintenance Process and Decision-making Criteria for the Outsourcing Initiative. 149

2.10.6 Insights. 153

2.10.7 Additional Reference Material 153

3 Methods and Tools for Data Quality Management. 155

3.1 Method for DQM Strategy Development and Implementation 155

3.1.1 Structure of the Method. 156

3.1.2 Examples of the Techniques used by the Method. 157

3.2 Maturity Assessment and Benchmarking Platform for Data Quality Management 163

3.2.1 Initial Situation.. 163

3.2.2 Maturity Model and Benchmarking as Control Instruments 164

3.2.3 The EFQM Model of Excellence for the Management of Master Data Quality 166

3.2.4 Corporate Data Excellence: Control Tools for Managers of Data Quality 167

3.3 The Corporate Data League: One Approach for Cooperative Data Maintenance of Business Partner Data. 170

3.3.1 Challenges in Maintaining Business Partner Data. 170

3.3.2 The Cooperative Data Management Approach.. 171

3.3.3 The Corporate Data League. 172

3.4 Additional Methods and Tools from CC CDQ.. 176

4 Factors for Success and Immediate Measures. 178

4.1 Factors for the Success of Data Quality Management. 178

4.2 Immediate Measures on the Path to Successful Data Quality Management 179

5 Bibliography.. 181

6 Glossary.. 193

About the Authors

Prof. em. Dr. Dr. h.c. Hubert Österlewas professor for Business Engineering and director of the Institute of Information Management at the University of St. Gallen (IWI-HSG) from 1980 to 2014. In 1989, he founded the Information Management Group and served in the company’s management and supervisory boards. In 2006, he founded the Business Engineering Institute St. Gallen AG and is presiding over its supervisory board. He is also member of the supervisory board of the CDQ AG. His main research areas are life engineering, corporate data quality, business networking, business engineering, and independent living.

Prof. Dr. Boris Ottoholds the Audi-Endowed Chair of Supply Net Order Management at the Technical University of Dortmund and is director for Information Management and Engineering at the Fraunhofer Institute for Material Flow and Logistics. The focal points of his research and teaching fields are business and logistic networks, corporate data management as well as enterprise systems and electronic business. Boris Otto studied Industrial Engineering in Hamburg and received his doctor’s degree under the supervision of Prof. Hans-Jörg Bullinger at the University of Stuttgart. He habilitated at the University of St. Gallen under the supervision of Prof. Hubert Österle. Further research appointments were at the Fraunhofer Institute for Industrial Engineering in Stuttgart and at the Tuck School of Business at Dartmouth College in New Hampshire in the United States. He gained comprehensive practical experiences at PricewaterhouseCoopers and at SAP. Boris Otto is a member of the scientific advisory board of eCl@ss e.V., a leading standard-setting organization for the classification of articles and products. He also heads the Data Innovation Lab at the Fraunhofer Innovation Center for Logistics and IT and is president of the supervisory board of the CDQ AG.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Corporate Data Quality»

Представляем Вашему вниманию похожие книги на «Corporate Data Quality» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Corporate Data Quality»

Обсуждение, отзывы о книге «Corporate Data Quality» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x