Handbook on Intelligent Healthcare Analytics
Здесь есть возможность читать онлайн «Handbook on Intelligent Healthcare Analytics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Handbook on Intelligent Healthcare Analytics
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
Handbook on Intelligent Healthcare Analytics: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook on Intelligent Healthcare Analytics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
The book explores the various recent tools and techniques used for deriving knowledge from healthcare data analytics for researchers and practitioners. A Handbook on Intelligent Healthcare Analytics
Handbook on Intelligent Healthcare Analytics — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook on Intelligent Healthcare Analytics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
3.6 Challenges with Healthcare Big Data
3.6.1 Challenges of Big Data
The main challenge in big data is to handle and manage the huge amount of assorted, complex, and interconnected information. It is difficult to sort out the data and prioritize the data because of its volume and variety.
Major big data challenges are as follows:
• Lack of proper understanding of the big data
• Data growth
• Combining data from various sources
• Selection of big data tool to capture, store, process, and analysis
• Data security
3.6.2 Challenges of Healthcare Big Data
The healthcare data and its analytics have problems like data accuracy, data security, data sharing, data capturing, and data visualization. The following are the major challenges faced by healthcare organizations with big data [10, 21, 22, 28].
Data Capturing
The main problems in healthcare big data are capturing data. The qualities of the clinical decisions are based on how well the big data is captured. The healthcare organization improves their data capture method by prioritizing the data based on the values.
Data Cleaning
Data cleaning is essential as medical data is captured at a variety of data sources. The data cleaning process checks the data for accuracy and correctness and also ensures whether the data are relevant.
Data Storage
The volume of healthcare data grows exponentially with time. It is difficult for the healthcare organization to store the big healthcare data with the traditional database and in a single system.
Data Security
Data security is the major challenge in the healthcare industry because of the frequent hackings. The challenges of healthcare providers are data encryption, data masking, and other protection methods for the limited data access to the outside people.
Lack of Integration between Administrative Data and Clinical System
Sometimes, there is a gap between the administrative data and the clinical system. Example: variation in the treatment code and the care given to the patients.
Data Sharing
The standard of collecting and storing the big data is different from one healthcare organization with another healthcare organization. The sharing and integrating the different formats of medical records are the real problem with medical data.
Data Updating
The healthcare data is not fixed. Most of the patient data requires frequent updates. For better treatment the up to date and real-time patients’ data is necessary. For example, the BP of the patient will vary every day. The old data will lead to wrong decisions in patient’s healthcare practice.
The main challenge in healthcare data is maintaining balance between protections of patient’s sensitive information, data integrity, and the usage of data for the knowledge discovery process [23]. All these challenges of healthcare data are not insoluble. The advanced technologies and new innovations will address all the abovementioned challenges of big data.
3.7 Conclusion
The objective of this chapter is to give a general idea about overview and characteristics of big data, different steps for deriving value from big data, big data technologies used for every step in the value chain process, use of knowledge systems in big data healthcare, various big data applications, and big data challenges in healthcare organizations. The healthcare organization needs to devote time and resources for implementing the big data value chain. Health is the precious gift of God to humans. A personalized and sustainable patient care service is the need of the hour. Big data analytics is capable of providing knowledge and valuable insights in medical data, which are useful for clinical decision, disease prediction, better treatment, etc. Healthcare big data is a permanent and continuously increasing phenomenon, which needs newer tools and technologies to analyze the data and to get knowledge for the present use and future research works.
References
1. De Mauro, A., Greco, M., Grimaldi, M., A formal definition of Big Data based on its essential features. Library Rev ., 65, 3, 122–135, 2016.
2. University of Illinois at Chicago. Big Data and Wearable Health Monitors: Harnessing the Benefits and Overcoming Challenges, 2019. https://healthinformatics.uic.edu/blog/big-data-and-wearable-health-monitors-harnessingthe-benefits-and-overcoming-challenges/.
3. white paper by Intel, in: French Hospital Uses Trusted Analytics Platform to Predict Emergency Department Visits and Hospital Admissions .
4. Kozlov, How to Improve EMR/EHR Using Predictive Analytics, 2020. https://www.romexsoft.com/blog/predictive-analytics-for-healthcare/.
5. Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K.M., Sundarsekar, R., Big Data Knowledge System in Healthcare, in: Internet of Things and Big Data Technologies for Next Generation Healthcare , pp. 133–157, 2017.
6. Cawthorne, J. Knowledge Management and Big Data: Strange Bedfellows? 2015. https://www.cmswire.com/social-business/knowledge-management-and-big-data-strange-bedfellows/.
7. Dash, S., Shakyawar, S.K., Sharma, M., Kaushik, S., Big data in healthcare: management, analysis and future prospects. J. Big Data 6, 54, 2019. https://doi.org/10.1186/s40537-019-0217-0
8. healthsnap. Structured and Unstructured Health Data: Challenges and Opportunities, 2019. https://healthsnap.io/structured-unstructured-health-data/.
9. Kong, H.J., Managing Unstructured Big Data in Healthcare System. Healthcare Informatics Research , vol. 25, 1, 1–2, 2019.
10. Krumholz, H.M., Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health affairs (Project Hope). 33, 7, 1163–1170, 2014. https://doi.org/10.1377/hlthaff.2014.0053.
11. Kiran, R., Top Big Data Technologies that you Need to know, 2021. https://www.edureka.co/blog/top-big-data-technologies/.
12. Bhadani, A., Jothimani, D., In Singh, M.K., Kumar, D.G., Big data: Challenges, opportunities and realities, in: Effective Big Data Management and Opportunities for Implementation , pp. 1–24, Pennsylvania, USA, IGI Global, 2016.
13. Fang, R., Pouyanfar, S., Yang, Y., Chen, S., Iyengar, S.S., Computational Health Informatics in the Big Data Age. ACM Comput. Surv. (CSUR) , 49, 1 – 36, 2016.
14. Bahri, S., Zoghlami, N., Abed, M., Tavares, J.M.R.S., Big Data for Healthcare: A Survey. IEEE Access , 7, 7397–7408, 2019.
15. https://missinglink.ai/guides/deep-learning-healthcare/ai-medical-imaging/
16. El Morr, C. and Subercaze, J., Knowledge Management in Healthcare, in: Handbook of Research on Developments in E-Health and Telemedicine , pp. 490–510, 2010.
17. Begoli, E. and Horey, J., Design Principles for Effective Knowledge Discovery from Big Data. 2012 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture , 2012.
18. Bresnick, J., Healthcare Big Data Analytics: From Description to Prescription. Health IT Analytics, 2015. https://healthitanalytics.com/news/healthcare-big-data-analytics-from-description-to-prescription.
19. Usvyat, L., 4 Types of Healthcare Analytics to Use in Your Practice. Fresenius Medical Care, 2019. https://fmcna.com/insights/education/types-of-healthcare-analytics/.
20. Kaduk, T., 4 Stages of Data Analytics Maturity: Challenging Gartner’s Model, 2016. Linkedin. https://www.linkedin.com/pulse/4-stages-data-analytics-maturity-challenging-gartners-taras-kaduk/.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Handbook on Intelligent Healthcare Analytics»
Представляем Вашему вниманию похожие книги на «Handbook on Intelligent Healthcare Analytics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Handbook on Intelligent Healthcare Analytics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.