Характерной особенностью геотемпературного поля вдоль этого геотраверса является резкая пертурбация изотерм при переходе от Кольско-Канинской моноклинали к Южно-Баренцевской синеклизе (рис. 9). Это обусловлено двумя причинами: во-первых, средняя теплопроводность пород синеклизы меньше, чем в районе моноклинали, где фундамент залегает на 5–6 км выше, во-вторых, под Южно-Баренцевской синеклизой зафиксирован относительно низкий тепловой поток. Если на профиле 4–4 мы оценили фоновый тепловой поток как 76–79 мВт/м 2, то здесь его значение составляет 64–66 мВт/м 2. При переходе севернее по профилю к структуре Штокманско-Лунинского порога тепловой поток возрастает до 72–77 мВт/м 2.
Рис. 9. Геолого-геотермический разрез по профилю 7–7 (условные обозначения см. рис. 5).
Такое сочетание теплофизических характеристик создает специфическую картину распределения изотерм катагенеза органического вещества. При переходе от Кольско-Канинской моноклинали к Южно-Баренцевской синеклизе глубина нахождения изотерм катагенеза резко уменьшается с 8–12 км до 4–5 км, а затем, севернее, плавно увеличивается до 6,5–7,5 км в районе ЗФИ.
К структуре Штокманско-Лунинского порога приурочены крупнейшие в регионе газоконденсатные месторождения, что хорошо коррелируется с минимальной глубиной нахождения катагенетического температурного интервала.
Профили 5–5 и 6–6, расположенные в районе архипелага ЗФИ, до выполнения исследований в 25-м рейсе НИС «Ак. Ник. Страхов» были слабо обеспечены геотермическими измерениями. Имелось лишь три определения теплового потока в скважинах «Северная», «Нагурская» и «Хейса», по которым сделана оценка глубинного теплового потока Л.А. Цыбулей и В.Г. Левашкевичем (1992), составившим 76–80 мВт/м 2. Можно согласиться с этой оценкой, т. к. полученные в 2007 году новые измерения на полигоне вблизи ЗФИ показали весьма контрастные значения: наряду с высокими величинами теплового потока (88 и 97 мВт/м 2), измерены и низкие значения (30–35 мВт/м 2), так что в среднем мы получим указанные выше оценки. Здесь мы не будем обсуждать причины столь контрастных значений теплового потока. Это сделано в другой статье авторов в этой же книге.
Строение Южно-Карской впадины изучено сейсмическими работами МОВ и МПВ, а также гравимагнитными методами. Результаты этих работ показывают, что впадина представляет собой рифтогенный бассейн мезозойского возраста с заметно утоненной континентальной корой (до 26–30 км) и резко дифференцированной структурой поверхности фундамента. Крупнейшие разломы имеют явно выраженный листрический облик, а амплитуда смещений по ним достигает 3–6 км ( Боголепов и др., 2000 ). Основные тектонические элементы рифтовой системы сформированы в результате последовательного отрыва крупных клиновидных блоков и пластин консолидированной коры по зонам разломов, выполаживающимся и затухающим в нижнекоровом слое. Растяжение земной коры в Южно-Карской впадине составляет около 20 %, что близко к значениям растяжения в рифтогенных Восточно-Баренцевском прогибе и Североморской впадине. Геодинамический режим растяжения всегда сопровождается повышением температур и теплового потока. Именно такой характер геотермического поля наблюдается нами в Южно-Карской впадине.
Южно-Карский седиментационный бассейн, являющийся подводным замыканием Западно-Сибирского мегабассейна, по углеводородному потенциалу является крупнейшим на арктическом шельфе России. Все ресурсы углеводородов приурочены к мезозойским отложениям и представлены в подавляющей своей части газом.
Для описания структуры коры в Карском море были использованы 24 профиля, полученные как в результате глубинного сейсмического профилирования по длинным геотраверсам (10 профилей), так и в результате обработки информации по коротким профилям МОВ (14 профилей) ( Поселов и др., 1996 ) (рис. 10). Вдоль каждого из них был выполнен расчет глубинных температур с помощью программного пакета «TERMGRAF»(рис. 11) (Подгорных и др., 2001). В качестве граничного условия на нижней границе задавался тепловой поток, измеренный в нескольких разведочных скважинах на акватории: (73–76 мВт/м 2– в западной части и 53 мВт/м 2– в восточной части, западнее арх. Арктического Института), у западного побережья п-ва Ямал (54–58 мВт/м 2) и на о. Белый (54–59 мВт/м 2). При расчете использовались значения теплофизических свойств слоев коры, адекватные установленным граничным скоростям (см. табл.1).
Читать дальше
Конец ознакомительного отрывка
Купить книгу