В гораздо более широком масштабе теория струн ищет объяснения самой сущности вещества – причем движется примерно в том же направлении, что и Томсон, когда придумывал модель атома. Томсон (ошибочно) полагал, что узлы могут дать ответ на вопрос о строении атомов. И вот по интересной прихоти судьбы специалисты по теории струн обнаружили, что узлы и в самом деле позволяют сделать некоторые выводы.
История теории струн – это великолепный пример нежданного могущества математики. Как я уже упоминал, даже «активная» сторона эффективности математики сама по себе, когда ученые генерируют математические теории, необходимые для описания наблюдаемых физических феноменов, иногда – если речь заходит о точности – приносит невероятные сюрпризы. Рассмотрим вкратце одну область физики, где важную роль играют обе стороны математики, и «активная», и «пассивная», – область, примечательную именно тем, какой поразительной точности удалось там добиться.
Галилей и другие итальянские ученые-экспериментаторы вывели законы падения тел, а Ньютон взял эти законы в сочетании с законами движения планет, которые открыл Кеплер, и на основе объединенных данных сформулировал математический закон всемирного тяготения. При этом Ньютону пришлось разработать совершенно новую область математики – интегральное и дифференциальное исчисление, – которое позволило в полной мере воплотить все качества законов движения и тяготения. С учетом погрешности современных Ньютону экспериментов и наблюдений, он сумел проверить собственный закон всемирного тяготения лишь с точностью хуже, чем четыре процента. А впоследствии оказалось, что по точности этот закон превосходит все мыслимые ожидания. К концу 50-х годов ХХ века погрешность экспериментов составляла менее одной десятитысячной доли процента.
Но и это еще не все. Целый ряд недавних спекулятивных теорий, целью которых было объяснить, как так вышло, что наша Вселенная расширяется с ускорением, предположили, что законы гравитации на очень маленьких расстояниях могут вести себя необычно. Вспомним, что по закону всемирного тяготения Ньютона притяжение уменьшается обратно пропорционально квадрату расстояния. То есть если удвоить расстояние между двумя массами, то сила тяготения, действующая на каждую массу, ослабеет в четыре раза. Новые сценарии предсказывали отклонения от этого поведения на расстояниях меньше миллиметра. Эрик Адельбергер, Дэниел Капнер и их коллеги из Университета штата Вашингтон в Сиэтле провели серию остроумных экспериментов, чтобы проверить предсказанные такими сценариями отклонения в зависимости от расстояния (Kapner et al. 2007). Самые свежие результаты, обнародованные в январе 2007 года, показали, что закон обратных квадратов действует даже на расстоянии пятидесяти шести тысячных миллиметра! Выходит, математический закон, сформулированный более трехсот лет назад на основе весьма скудных наблюдательных данных, оказался не просто феноменально точным, но и действует на расстояниях, на которых до самого недавнего времени нельзя было даже проводить подобные измерения!
Остался один важный вопрос, который Ньютон вовсе оставил без ответа: как же действует гравитация? Каким образом Земля, находящаяся от Луны на расстоянии почти 400 000 километров, влияет на движение Луны?
Ньютон об этом недостатке своей теории прекрасно знал и открыто признавал в «Началах».
До сих пор я изъяснил небесные явления и приливы наших морей на основании силы тяготения, но я не указывал причины самого тяготения. Эта сила происходит от некоторой причины, которая проникает до центра Солнца и планет без уменьшения своей способности и которая действует… повсюду на огромные расстояния, убывая пропорционально квадратам расстояний… Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю ( пер. А. Крылова ).
Решить эту задачу и восполнить пробел, оставленный Ньютоном, удалось Альберту Эйнштейну (1879–1955). В 1907 году у Эйнштейна появилась весьма серьезная причина интересоваться гравитацией – оказалось, что его специальная теория относительности прямо противоречит закону всемирного тяготения Ньютона [153] Основные идеи общей и специальной теории относительности описаны во множестве работ. Перечислю лишь некоторые, особенно мне полюбившиеся: Davies 2001, Deutsch 1997, Ferris 1997, Gott 2001, Greene 2004, Hawking and Penrose 1996, Kaku 2004, Penrose 2004, Rees 1997 и Smolin 2001. Недавно вышла чудесная книга с превосходным описанием и Эйнштейна как человека, и его идей – Isaacson 2007. Однако великолепные книги об Эйнштейне и его мировоззрении, разумеется, публиковались и раньше: Bodanis 2000, Lightman 1993, Overbye 2000 и Pais 1982. Прекрасное собрание статей Эйнштейна – Hawking 2007.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу