Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Здесь есть возможность читать онлайн «Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: foreign_edu, Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Квантовая вселенная. Как устроено то, что мы не можем увидеть: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Квантовая вселенная. Как устроено то, что мы не можем увидеть»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.
Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.
На русском языке публикуется впервые.

Квантовая вселенная. Как устроено то, что мы не можем увидеть — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Квантовая вселенная. Как устроено то, что мы не можем увидеть», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Прежде чем закончить с квантовой электродинамикой, необходимо устранить последнее непонимание. Как вы помните, первый доклад на конференции в Шелтер-Айленде касался лэмбовского перехода – аномалии в спектре водорода, которая не объяснялась в рамках квантовой теории Гейзенберга и Шрёдингера. Через неделю после этой встречи Ганс Бете выдал первые, еще приблизительные вычисления ответа. На рис. 10.5 показан атом водорода с точки зрения квантовой электродинамики. Электромагнитное взаимодействие, связывающее протон и электрон, можно представить в виде ряда диаграмм Фейнмана возрастающей сложности, как и в случае с двумя взаимодействующими электронами на рис. 10.1. Мы изобразили две простейшие возможные диаграммы на рис. 10.5. До квантовой электродинамики расчеты энергетических уровней электрона включали в себя только верхнюю диаграмму на рисунке, которая отражает физику электрона, удерживаемого в потенциальной яме, которая создана протоном. Но мы уже выяснили, что при взаимодействии может произойти еще много всего. Вторая диаграмма на рис. 10.5 показывает кратковременную флуктуацию фотона в электрон-позитронной паре, и этот процесс тоже стоит учесть при расчете возможных энергетических уровней электрона. Эта диаграмма, как и многие другие, вносит в результат подсчетов [49]небольшие коррективы.

Рис 105 Атом водорода Бете совершенно справедливо включил в расчеты важные - фото 68

Рис. 10.5. Атом водорода

Бете совершенно справедливо включил в расчеты важные результаты «однопетлевых» диаграмм, подобных изображенным на рисунке, и обнаружил, что они оказывают некоторое влияние на сдвиг энергетических уровней, а следовательно, и на видимый спектр. Его результаты соответствовали измерениям Лэмба. Иными словами, квантовая электродинамика заставляет представить атом водорода в виде невероятной какофонии субатомных частиц, порождающихся и прекращающих существование. Лэмбовский сдвиг стал первой непосредственной встречей человечества с этими эфирными квантовыми флуктуациями.

Прошло немного времени – и эстафетную палочку перехватили двое других участников встречи в Шелтер-Айленде: Ричард Фейнман и Джулиан Швингер. Через пару лет квантовая электродинамика уже развилась в ту теорию, которую мы знаем сейчас, – прототип квантовой теории поля и образец для тех теорий, которым еще предстояло появиться на свет и которые описывали сильное и слабое взаимодействия. За свои заслуги Фейнман, Швингер и японский физик Синъитиро Томонага в 1965 году получили Нобелевскую премию «За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц». К этим глубоким последствиям мы и переходим.

11. Пустое пространство не такое уж пустое

Не все в мире берет начало во взаимодействии частиц с электрическим зарядом. Квантовая электродинамика не объясняет «сильных ядерных» процессов, которые сцепляют кварки внутри протонов и нейтронов, и «слабых ядерных» процессов, благодаря которым горит наше Солнце.

Нельзя писать книгу о квантовой теории природы и оставить за ее рамками половину фундаментальных сил, так что в этой главе мы заполним пробел, прежде чем погрузиться непосредственно в пустое пространство. Окажется, что вакуум – это очень интересное место, полное возможностей и препятствий на пути частиц.

В первую очередь нужно подчеркнуть, что слабое и сильное ядерное взаимодействия описываются при помощи точно такого же подхода к квантовой теории поля, о котором шла речь при разговоре о квантовой электродинамике. Именно в этом смысле можно говорить о серьезных последствиях работы Фейнмана, Швингера и Томонаги. В целом теория этих трех взаимодействий получила весьма нейтральное название Стандартной модели физики частиц . Когда мы пишем эти строки, Стандартная модель проходит тестирование на разрыв в самой большой и самой хитроумной машине в истории человечества – Большом адронном коллайдере ЦЕРН (он же БАК). «На разрыв» – удачное выражение, потому что в отсутствие чего-то до сих пор не открытого Стандартная модель прекращает делать осмысленные предсказания при энергиях, которыми сопровождаются в БАК столкновения протонов на скорости, почти равной скорости света. На языке этой книги можно сказать, что квантовые правила начинают порождать циферблаты со стрелками длиной более 1, а это значит, что определенные процессы, связанные со слабым квантовым взаимодействием, начинают предсказываться с вероятностью более 100 %. Это очевидный нонсенс, и предполагается, что БАК должен найти нечто новое. Проблема в том, чтобы идентифицировать это новое в сотнях миллионов столкновений протонов, которые каждую секунду происходят на глубине 100 м под Юрскими горами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Квантовая вселенная. Как устроено то, что мы не можем увидеть»

Представляем Вашему вниманию похожие книги на «Квантовая вселенная. Как устроено то, что мы не можем увидеть» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Квантовая вселенная. Как устроено то, что мы не можем увидеть»

Обсуждение, отзывы о книге «Квантовая вселенная. Как устроено то, что мы не можем увидеть» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x