Прежде чем закончить с квантовой электродинамикой, необходимо устранить последнее непонимание. Как вы помните, первый доклад на конференции в Шелтер-Айленде касался лэмбовского перехода – аномалии в спектре водорода, которая не объяснялась в рамках квантовой теории Гейзенберга и Шрёдингера. Через неделю после этой встречи Ганс Бете выдал первые, еще приблизительные вычисления ответа. На рис. 10.5 показан атом водорода с точки зрения квантовой электродинамики. Электромагнитное взаимодействие, связывающее протон и электрон, можно представить в виде ряда диаграмм Фейнмана возрастающей сложности, как и в случае с двумя взаимодействующими электронами на рис. 10.1. Мы изобразили две простейшие возможные диаграммы на рис. 10.5. До квантовой электродинамики расчеты энергетических уровней электрона включали в себя только верхнюю диаграмму на рисунке, которая отражает физику электрона, удерживаемого в потенциальной яме, которая создана протоном. Но мы уже выяснили, что при взаимодействии может произойти еще много всего. Вторая диаграмма на рис. 10.5 показывает кратковременную флуктуацию фотона в электрон-позитронной паре, и этот процесс тоже стоит учесть при расчете возможных энергетических уровней электрона. Эта диаграмма, как и многие другие, вносит в результат подсчетов [49]небольшие коррективы.
Рис. 10.5. Атом водорода
Бете совершенно справедливо включил в расчеты важные результаты «однопетлевых» диаграмм, подобных изображенным на рисунке, и обнаружил, что они оказывают некоторое влияние на сдвиг энергетических уровней, а следовательно, и на видимый спектр. Его результаты соответствовали измерениям Лэмба. Иными словами, квантовая электродинамика заставляет представить атом водорода в виде невероятной какофонии субатомных частиц, порождающихся и прекращающих существование. Лэмбовский сдвиг стал первой непосредственной встречей человечества с этими эфирными квантовыми флуктуациями.
Прошло немного времени – и эстафетную палочку перехватили двое других участников встречи в Шелтер-Айленде: Ричард Фейнман и Джулиан Швингер. Через пару лет квантовая электродинамика уже развилась в ту теорию, которую мы знаем сейчас, – прототип квантовой теории поля и образец для тех теорий, которым еще предстояло появиться на свет и которые описывали сильное и слабое взаимодействия. За свои заслуги Фейнман, Швингер и японский физик Синъитиро Томонага в 1965 году получили Нобелевскую премию «За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц». К этим глубоким последствиям мы и переходим.
11. Пустое пространство не такое уж пустое
Не все в мире берет начало во взаимодействии частиц с электрическим зарядом. Квантовая электродинамика не объясняет «сильных ядерных» процессов, которые сцепляют кварки внутри протонов и нейтронов, и «слабых ядерных» процессов, благодаря которым горит наше Солнце.
Нельзя писать книгу о квантовой теории природы и оставить за ее рамками половину фундаментальных сил, так что в этой главе мы заполним пробел, прежде чем погрузиться непосредственно в пустое пространство. Окажется, что вакуум – это очень интересное место, полное возможностей и препятствий на пути частиц.
В первую очередь нужно подчеркнуть, что слабое и сильное ядерное взаимодействия описываются при помощи точно такого же подхода к квантовой теории поля, о котором шла речь при разговоре о квантовой электродинамике. Именно в этом смысле можно говорить о серьезных последствиях работы Фейнмана, Швингера и Томонаги. В целом теория этих трех взаимодействий получила весьма нейтральное название Стандартной модели физики частиц . Когда мы пишем эти строки, Стандартная модель проходит тестирование на разрыв в самой большой и самой хитроумной машине в истории человечества – Большом адронном коллайдере ЦЕРН (он же БАК). «На разрыв» – удачное выражение, потому что в отсутствие чего-то до сих пор не открытого Стандартная модель прекращает делать осмысленные предсказания при энергиях, которыми сопровождаются в БАК столкновения протонов на скорости, почти равной скорости света. На языке этой книги можно сказать, что квантовые правила начинают порождать циферблаты со стрелками длиной более 1, а это значит, что определенные процессы, связанные со слабым квантовым взаимодействием, начинают предсказываться с вероятностью более 100 %. Это очевидный нонсенс, и предполагается, что БАК должен найти нечто новое. Проблема в том, чтобы идентифицировать это новое в сотнях миллионов столкновений протонов, которые каждую секунду происходят на глубине 100 м под Юрскими горами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу