Третья иллюстрация на рисунке – аналогия с текущей водой. Электроны слева готовы и намерены потечь вниз по проводу, но барьер мешает им сделать это. Точно так же дырки в области р -типа скапливаются не с той стороны барьера; водяной барьер и падение потенциала – два разных способа представления одного и того же. Так обстоят дела, если просто скрепить вместе два куска кремния – n -типа и р -типа. Однако их скрепление требует несколько больших усилий, чем можно предположить: их нельзя просто склеить, потому что такое сочленение не позволит электронам и дыркам свободно перетекать из одной области в другую.
Самое интересное, если подключить этот pn -переход к батарее, это позволит повышать или понижать потенциальный барьер между областями n -типа и р- типа. Если понизить потенциал области р -типа, то он упадет еще сильнее, так что электронам и дыркам станет еще сложнее двигаться по сочленению. Но повышение потенциала области р -типа (или ослабление потенциала области n -типа) подобно понижению плотины, сдерживающей воду. Электроны области n -типа немедленно начинают затоплять область р -типа, а дырки движутся столь же массово, но в противоположном направлении. Таким образом pn -переход может использоваться как диод: он может обеспечить движение тока, правда, только в одном направлении [43]. Но диоды не главный предмет нашего интереса.
Рис. 9.4 – это набросок устройства, изменившего мир, – транзистора. Он показывает, что произойдет, если сделать своеобразный сэндвич – слой кремния p -типа разместить между двумя слоями кремния n -типа. Здесь нам хорошую службу сослужит объяснение про диод, потому что идеи примерно те же самые. Электроны движутся из областей n -типа в области р -типа, а дырки движутся в обратном направлении, пока из-за падений потенциала в сочленениях между слоями такое взаимопроникновение не прекращается. В изолированном виде можно представить себе существование двух резервуаров электронов, разделенных барьером, и один резервуар дырок, зажатый между ними.
Рис. 9.4. Транзистор
Самое интересное происходит, когда мы прикладываем напряжение к области n -типа с одной стороны и к области р -типа в середине. Приложение положительного напряжения заставляет подняться плоскую часть кривой слева (на величину Vc ) и плоский участок в области р -типа (на величину Vb ). Это показано сплошной линией на центральной диаграмме. Такой способ расположения потенциалов имеет серьезные последствия: создается настоящий водопад электронов, которые преодолевают сниженный центральный барьер и направляются в область n -типа слева (напомним, что электроны текут «в горку»). Если Vc больше, чем Vb , то поток электронов будет односторонним и электроны слева не смогут преодолеть область р -типа. Как бы безобидно ни звучали эти фразы, но мы только что описали электронный клапан. Итак, посредством применения напряжения к области р -типа мы можем включать и выключать электрический ток.
И вот завершение: мы готовы к полному осознанию потенциала скромного транзистора. На рис. 9.5 снова демонстрируем действие транзистора через параллели с текущей водой. Ситуация «закрытого клапана» полностью аналогична тому, что происходит в области р -типа без всякого напряжения. Применение напряжения соответствует открытию клапана. Под двумя трубками мы изобразили символ, который обычно используется для транзистора, и с известной долей воображения можно утверждать, что он даже похож на клапан.
Рис. 9.5. Аналогия транзистора с водяными трубками
Что можно сделать с клапанами и трубками? Мы можем создать компьютер, а если трубки и клапаны достаточно малы, то вполне серьезный компьютер.
Рис. 9.6 представляет собой концептуальную иллюстрацию того, как можно использовать трубку с двумя клапанами и создать нечто под названием «логический вентиль». У трубки слева оба клапана открыты, в результате снизу вытекает вода. У трубки в центре и трубки справа один клапан открыт и один клапан закрыт, так что, очевидно, вода снизу не выливается. Мы решили не изображать четвертый вариант – когда оба клапана закрыты. Если обозначить вытекание воды из днища трубок цифрой 1, отсутствие такого вытекания – цифрой 0, а также назначить для открытого клапана цифру 1, а для закрытого цифру 0, то можно изобразить действие четырех трубок (трех нарисованных и одной ненарисованной) уравнениями 1 и 1 = 1, 1 и 0 = 0, 0 и 1 = 0 и 0 и 0 = 0. Слово « и» – логический оператор, который используется здесь в техническом смысле: система из трубки и клапанов, которую мы только что описали, называется «вентиль и». Этот вентиль разрешает два ввода (состояние двух клапанов) и возвращает единственное значение (течет вода или нет), при этом единственный способ получить на выходе 1 – это ввести оба раза 1. Надеемся, теперь понятно, как можно с помощью пары подсоединенных транзисторов сделать «вентиль и» – принципиальная схема дана на этом рисунке.
Читать дальше
Конец ознакомительного отрывка
Купить книгу