Начнем с цифр. В прошлой главе мы видели, что структуру простейшего атома водорода можно понять, найдя разрешенные квантовые волны, которые помещаются внутри потенциальной ямы протона. Это позволило разобраться, по крайней мере, с количественной точки зрения, почему атомы водорода испускают свет именно в таком диапазоне. Будь у нас время, мы могли бы вычислить и энергетические уровни в атоме водорода. Любой студент-физик в какой-то момент обучения проводит эти вычисления, и они прекрасно сходятся с экспериментальными данными. Кстати, о предыдущей главе: упрощение «частица в ящике» было довольно удачным, поскольку содержало все критические моменты, которые мы хотели подчеркнуть. Однако теперь нам понадобятся еще более точные вычисления, учитывающие, что реальный атом водорода существует в трех измерениях. Для нашей частицы в ящике мы рассматривали только одно измерение и получили серию энергетических уровней, помеченных числом n . Низший энергетический уровень был назван n = 1, следующий – n = 2 и т. д. Когда расчеты распространяются на случай для трех измерений, оказывается (что, впрочем, не должно удивлять), что для характеристики всех разрешенных энергетических уровней необходимы три числа. Традиционно они помечаются как n, l и m и называются квантовыми числами (в этой главе не следует путать m с массой частицы).
Квантовое число n – это эквивалент числа n для частицы в ящике. Оно принимает целые значения ( n = 1, 2, 3 и т. д.), а энергия частицы стремится к увеличению с увеличением n . Возможные значения l и m оказываются связаны с n; l должно быть меньше n и может равняться нулю, например, если n = 3, то l может быть 0, 1 или 2; m может принимать любое значение от минус l до плюс l с целочисленными шагами. Так, если l = 2, то m может равняться −2, −1, 0, +1 или +2. Мы не собираемся объяснять, откуда берутся все эти числа, потому что к нашему пониманию предмета это ничего не добавит. Достаточно сказать, что четыре волны на рис. 6.9 имеют ( n, l ) = (1,0), (2,0), (2,1) и (3,0) соответственно (для всех этих волн m = 0) [31].
Как мы уже говорили, квантовое число n здесь главное: оно контролирует разрешенные значения энергии для электрона. В небольшой степени разрешенные значения энергии зависят и от значения l , но проявляется это только при очень точных измерениях испускаемого света. Бор не принимал его во внимание, впервые вычисляя энергию спектральных линий водорода, и его исходная формула выражалась исключительно через n . От m энергия электрона совершенно не зависит, пока атом водорода не помещен в магнитное поле (собственно, m и называется магнитным квантовым числом ), но это не значит, что m не важно. Чтобы понять это, вернемся к нашим числам.
Если n = 1, сколько существует возможно разных энергетических уровней? Применив сформулированные выше правила, узнаем, что l и m могут в случае n = 1 равняться только нулю, так что энергетический уровень будет лишь 1.
Теперь проведем расчеты для n = 2: l может принимать два значения, 0 и 1. Если l = 1, то m может равняться −1, 0 или +1, то есть получается еще 3 энергетических уровня (всего 4).
Для n = 3 l может составлять 0, 1 или 2. Для l = 2 m может равняться −2, −1, 0, +1 или +2, что дает 5 уровней. Итак, всего получается 1 + 3 + 5 = 9 уровней для n = 3. И так далее.
Запомните числа для трех первых значений n : 1, 4 и 9. Теперь посмотрим на рис. 7.1, где показаны первые четыре ряда периодической таблицы химических элементов, и подсчитаем, сколько элементов в каждом ряду. Разделив эти значения на 2, мы получим 1, 4, 4 и 9. Важность этого вскоре выяснится.
Рис. 7.1. Первые четыре ряда периодической таблицы химических элементов
Честь расположения химических элементов подобным образом обычно приписывается русскому химику Дмитрию Менделееву, который представил ее 6 марта 1869 года на заседании Русского химического общества. Это было задолго до того, как придумали вычислять разрешенные энергетические уровни атома водорода. Менделеев расположил элементы в порядке их атомных весов, что на современном языке соответствует количеству протонов и нейтронов внутри атомных ядер, хотя, конечно, в то время он и этого тоже не знал. Расположение элементов на самом деле соответствует числу протонов в ядре (количество нейтронов значения не имеет), но для самых легких элементов эта поправка не имеет значения, благодаря чему Менделеев и сумел расставить их в правильном порядке. Он решил выстроить элементы в ряды и столбцы, отметив, что некоторые элементы обладают очень похожими химическими свойствами, несмотря на разницу атомных весов; вертикальные столбцы как раз и объединяют подобные химические элементы – так, гелий, неон, аргон и криптон в крайнем правом столбце таблицы считаются инертными газами. И Менделеев не только правильно зафиксировал существующее расположение, но и предсказал наличие новых элементов, которые должны были заполнить пробелы в его таблице: элементы 31 и 32 (галлий и германий) были открыты в 1875 и 1886 годах соответственно. Эти открытия подтвердили, что Менделееву удалось нащупать нечто очень важное в строении атомов, но пока никто не знал, что это такое.
Читать дальше
Конец ознакомительного отрывка
Купить книгу