Похоже, все наши решения описываются простым правилом, в котором сплетаются воедино наиболее изящные математические находки прошлых веков: броуновское движение, закон Байеса, машина Тьюринга. Начнем с простейшего из решений: как мы определяем, что 4 меньше 5? Психологические изыскания показывают, что за этим несложным действием таится много сюрпризов. Во-первых, наше быстродействие при этом не так уж велико: на решение уходит почти полсекунды – от момента, когда на экране появляется цифра 4, до момента, когда мы нажимаем на кнопку. Во-вторых, наше время отклика сильно варьируется от опыта к опыту (в интервале от 300 до 800 миллисекунд), хотя мы всякий раз реагируем на один и тот же цифровой знак – «4». В‑третьих, мы допускаем ошибки. Это звучит смешно, однако даже при сравнении 4 и 5 мы иногда ошибаемся. В‑четвертых, наши успехи в этом действии различны при разном числовом значении показываемых нам объектов: когда числа находятся далеко друг от друга (скажем, если это 1 и 5), мы принимаем решение быстрее и делаем меньше ошибок по сравнению с теми случаями, когда числа близки (скажем, если это те же 4 и 5).
Все вышеприведенные факты, как и многие другие, можно объяснить одним законом: наш мозг принимает решения, накапливая доступную статистическую информацию и выдавая результат, когда общий объем информации превышает некоторый порог.
Поясню это утверждение. Принимая решение, мозг сталкивается с проблемой отделения сигнала от шума. Поступающая информация (которая служит основой для принятия решения) всегда содержит шум: фотоны попадают на нашу сетчатку в случайные моменты, нейроны передают информацию лишь с ограниченной надежностью, к тому же по всему мозгу то и дело происходят спонтанные всплески нейронной активности, добавляя шум. Даже когда на входе всего лишь число, анализ нейронной активности показывает, что количество, соответствующее этому числу, кодируется «шумной» группой нейронов, активизирующихся в полуслучайные моменты, причем некоторые нейроны сигнализируют «Я думаю, это 4», другие – «Это ближе к 5», третьи – «Это ближе к 3» и т. п. Поскольку мозговая система принятия решений видит лишь никак не помеченные пики нейронной активности, а не развернутые символы, отделение зерен от плевел становится для нее настоящей проблемой.
Как же вынести надежное решение в присутствии шума? Впервые математический ответ для этой задачи предложил Алан Тьюринг, разгадывая во время Второй мировой войны код «Энигмы» в Блетчли-парке – секретном центре британской разведки. Тьюринг обнаружил небольшую погрешность в действиях немецкой шифровальной машины «Энигма»; это означало, что некоторые немецкие послания содержали небольшое количество понятной британским дешифровщикам информации. Но, к сожалению, ее не хватало, чтобы разгадать шифр. И тогда Тьюринг для объединения всех разрозненных «улик» применил закон Байеса. Не останавливаясь на математическом аппарате, скажем лишь, что закон Байеса дает простой способ учесть и сложить вместе все такие «намеки на истину», приплюсовать их к уже имеющимся сведениям и в результате получить обобщенную статистическую картину, которая покажет искомую «общую сумму».
Из‑за шума на входе поступающая «сумма улик» колеблется вверх-вниз: некоторые входящие послания подтверждают наши выводы, а некоторые лишь добавляют шума. На выходе мы получаем то, что математики именуют случайным блужданием: колеблющуюся череду чисел, которая является функцией времени. Однако в нашем случае числа имеют определенный смысл: они представляют вероятность того, что одна гипотеза верна (т. е. что число на входе меньше 5). А следовательно, разумно будет действовать подобно специалистам‑статистикам и подождать, пока накапливаемый нами массив статистических данных не превзойдет определенный порог – определенное значение вероятности ( р ). Если мы установим р = 0,999, это будет означать, что шанс ошибиться у нас – один из тысячи.
Заметьте, мы можем установить этот порог на любом произвольно выбранном значении. Однако чем выше мы его задерем, тем дольше нам придется ждать решения. Тут уж либо скорость ценой точности, либо наоборот: можно долго ждать и в итоге принять очень точное решение, либо рискнуть отреагировать раньше, но при этом допустить больше ошибок. Собственно, при любом выборе мы всегда совершим сколько-то ошибок.
Достаточно сказать, что алгоритм принятия решений, который я набросал выше (и который, попросту говоря, описывает, как любое разумное существо должно вести себя в условиях информационного шума), ныне рассматривается учеными как общий механизм принятия решений людьми. Он объясняет и время отклика, и разброс этого времени, и форму соответствующего статистического распределения. Он дает описание того, почему мы допускаем ошибки, как эти ошибки соотносятся со временем отклика и как мы устанавливаем баланс скорости и точности. Он применим ко всем разновидностям решений, от сенсорных (я заметил какое-то движение – или нет?) до лингвистических (что я услышал – «дом» или «лом»?) и даже до проблем сравнительно высокого уровня (когда мне лучше выполнить это задание – в первую или во вторую очередь?). А в более сложных случаях (скажем, при выполнении операций над многозначными числами или осуществлении целой серии заданий) наше поведение являет собой череду шагов, каждый из которых включает накопление информации и достижение определенного порога. Так что подобный подход, оказывается, великолепно описывает и наши напряженные многостадийные подсчеты, уподобляющие нас машинам Тьюринга.
Читать дальше