Обратные степенные законы проявляют себя не только в обществе: они доминируют и в статистике мира природы. Десятое по размеру озеро, скорее всего, будет примерно в 10 раз меньше самого крупного, сотое по высоте дерево в лесу – в 100 раз ниже самого большого, а тысячный по величине камень на берегу моря окажется в 1000 раз меньше самого крупного.
Нравятся они нам или нет, обратные степенные законы неизбежны, как турбулентность, энтропия или закон всемирного тяготения. При всем при том мы можем несколько сглаживать их проявления в социальном контексте: все-таки не стоит с безнадежным видом утверждать, что мы совсем не в состоянии контролировать имущественное неравенство между нашими богатыми и нашими бедными. Но общие очертания графиков для обратных степенных законов никуда не денутся. Можно сколько угодно негодовать на обратный степенной закон, а можно принять его, надеясь когда-нибудь сгладить безжалостную кривую, чтобы она не вздымалась вверх так круто.
Сэмюэл Эббсман
Специалист по прикладной математике, старший научный сотрудник Ewing Marion Kauffman Foundation
В одной из своих знаменитых «Сказок просто так» Редьярд Киплинг повествует о том, как леопард обзавелся пятнами. Если довести этот подход до логического предела, выяснится, что нам нужны отдельные истории про самых разных животных, к примеру, про пятна леопарда, коровы или сплошную окраску пантеры. Пришлось бы добавить и рассказы о сложных узорах всевозможных других существ, от моллюсков до тропических рыб.
Но к счастью, существует единственное общее объяснение, показывающее, каким образом возникают все эти разнообразные узоры. Нужно лишь применить одну объединяющую теорию.
Еще в 1952 году, когда Алан Тьюринг опубликовал статью «Химические основы морфогенеза», ученые начали понимать, что простой набор математических формул может управлять всем разнообразием узоров и расцветок животного мира. Эта модель называется реакционно-диффузной и работает сравнительно просто. Представьте, что у вас есть несколько веществ, которые диффундируют по поверхности с различной скоростью и могут взаимодействовать друг с другом. В большинстве случаев процесс диффузии просто приводит к равномерному распределению того или иного вещества (скажем, сливки, влитые в кофе, в конце концов равномерно распределятся по всей кружке, и в результате мы получим светло-коричневую жидкость), однако при диффузии и одновременном взаимодействии нескольких веществ распределение цветов может оказаться неравномерным. Хоть наша интуиция, возможно, и противится этому, выясняется, что такой процесс не только происходит, но и может быть смоделирован при помощи простого набора уравнений, которые и объясняют невероятное разнообразие узоров и расцветок животного мира.
Биологи-математики исследуют свойства реакционно-диффузных уравнений с тех самых пор, как вышла статья Тьюринга. Они обнаружили, что варьирование параметров уравнений позволяет получить те самые «животные узоры», которые мы наблюдаем в природе. Некоторые математики изучают, как размеры и форма поверхности влияют на них. По мере изменения одного из параметров можно легко перейти от жирафьих пятен к кляксам, украшающим шкуру голштинских коров.
Эта изящная модель даже позволяет давать несложные прогнозы: к примеру, если пятнистое животное может иметь полосатый хвост (и очень часто имеет), то у полосатого животного никогда не будет пятнистого хвоста. И именно это мы и видим в жизни! Реакционно-диффузные уравнения не только дают все разнообразнейшие вариации узоров и расцветок, наблюдаемые в природе, но показывают и ограничения, присущие биологии. Киплинговское «просто так» можно без опасений променять на элегантность и универсальность этих уравнений.
Универсальный алгоритм принятия человеком решений
Станислас Дехан
Нейробиолог (Коллеж де Франс); автор книги Reading in the Brain: The New Science How We Read (« Чтение мозга: новая наука о том, как мы читаем »)
Конечной целью науки, как некогда утверждал французский физик Жан Батист Перрен, должна стать «замена видимой сложности невидимой простотой». Может ли наука о психологии человека достичь этой амбициозной цели – открыть изящные правила, которые лежат в основе невероятного разнообразия человеческих мыслей? Многие ученые до сих пор считают психологию «нестрогой» наукой, чьи методы и объект исследования чересчур расплывчаты, чересчур сложны и чересчур пронизаны бесчисленными слоями культурных тонкостей, чтобы когда-нибудь привести их к элегантным математическим обобщениям. Однако ученые-когнитивисты знают, что это предубеждение ошибочно. Человеческое поведение следует строгим законам потрясающей математической красоты, причем следует им неукоснительно. Я представлю на ваш суд лишь один из них – математический закон, в соответствии с которым мы принимаем свои решения.
Читать дальше