1 ...5 6 7 9 10 11 ...118
Следующий шаг по пути мастера – операции с двузначными числами. Как по мне, так здесь-то и начинается самое веселье, хотя бы потому, что способов, которыми можно достичь нужного результата, много и все они разные. Это значит, что вы можете проверить себя – и одновременно насладиться стройностью арифметических чудес. Рассмотрим всего один пример: 32 × 38.
Самый популярный (и наиболее близкий к подсчету в столбик) метод – это метод сложения , безотказный в решении почти любой задачи. Он предлагает нам разбить одно из чисел (обычно то, которое состоит из меньших цифр) надвое, умножить каждую часть на второе число, а потом сложить результаты. Например,
32 × 38 = (30 + 2) × 38 = 30 × 38 + 2 × 38 =…
Как будем умножать 30 × 38? Сначала умножим 3 × 38, а в конце прибавим 0. То есть 3 × 38 = 90 + 24 = 114, поэтому 30 × 38 = 1140. А потом 2 × 38 = 60 + 16 = 76. В итоге
32 × 38 = 30 × 38 + 2 × 38 = 1140 + 76 = 1216
Другой способ решить наш пример (особенно если одно из наших чисел заканчивается на 7, 8 или 9) – использовать метод вычитания . Начать следует с того, что 38 = 40 – 2, а значит,
38 × 32 = 40 × 32 – 2 × 32 = 1280 – 64 = 1216
Сложность обоих методов – как сложения, так и вычитания – заключается в том, что они заставляют вас постоянно держать в голове большие числа (вроде 1140 или 1280), одновременно делая другие вычисления. Не самая простая задача. Мне больше по душе метод разложения на сомножители , особенно полезный всякий раз, когда одно из имеющихся у нас чисел является произведением двух однозначных чисел. В нашем примере это 32 – произведение 8 и 4. Следовательно,
38 × 32 = 38 × 8 × 4 = 304 × 4 = 1216
Если же мы разложим 32 на 4 и 8, получим 38 × 4 × 8 = 152 × 8 = 1216, но я лично предпочитаю умножать двузначное число сначала на больший сомножитель, а промежуточный результат (обычно трехзначный) – на меньший.
Отступление
Метод разложения отлично работает при умножении на 11 – хотя бы потому, что здесь есть один любопытный и при этом простой трюк: нужно просто сложить между собой цифры первого числа и поместить сумму в его середину. Для примера умножим 53 на 11: 5 + 3 = 8, значит, ответ будет 583. А вот 27 × 11 ÷ 2 + 7 = 9, в итоге получаем 297. А если сумма больше 9, берем последнюю цифру результата сложения, а первую цифру исходного числа увеличиваем на единицу. Например, 48 × 11 ÷ 4 + 8 = 12, значит, ответ будет 528. По аналогии: 74 × 11 = 814. Этот трюк работает и при умножении на числа, кратные 11, например,
74 × 33 = 74 × 11 × 3 = 814 × 3 = 2442
Другой интересный метод – метод сближения . Его можно использовать, когда двузначные числа , которые вы перемножаете, начинаются с одной и той же цифры . Неискушенному наблюдателю он может показаться настоящим фокусом. Ведь разве можно просто взять и поверить, что
38 × 32 = (30 × 40) + (8 × 2) = 1200 + 16 = 1216
Вычисления становятся элементарными, если последние цифры двух чисел дают в сумме 10 (как в нашем примере: оба числа начинаются с 3, а сумма их последних цифр – 8 и 2 – равна 10). Вот еще один пример:
83 × 87 = (80 × 90) + (3 × 7) = 7200 + 21 = 7221
Но даже если вторые цифры не дадут в сумме 10, метод от этого не станет менее эффективным и эффектным, да и вычисления усложнятся не так уж и сильно. Чтобы умножить, например, 41 на 44, сначала надо уменьшить меньшее из них на единицу (чтобы работать с круглым числом 40) и, соответственно, увеличить на ту же единицу большее число:
41 × 44 = (40 × 45) +(1×4) = 1800 + 4 = 1804
Для 34 × 37 отнимаем 4 у 34 (и остается 30) и отдаем их 37 (37 + 4 = 41), а потом прибавляем 4 × 7:
34 × 37 = (30 × 41) + (4 × 7) = 1230 + 28 = 1258
Кстати, помните загадочный пример с 104 × 109? Там использовался тот же самый метод:
104 × 109 = (100 × 113) + (04 × 09) = 11 300 + 36 = 11 336
В некоторых школах, кстати, учеников заставляют учить не привычную таблицу умножения, которая заканчивается 10, но расширенную до 20. Наш метод сводит эту необходимость на нет:
17 × 18 = (10 × 25) + (7 × 8) = 250 + 56 = 306
Как же так получается, что эта штука работает, спросите вы? Чтобы разобраться, нужно обратиться к алгебре – этим мы займемся в главе 2. А алгебра даст нам еще больше способов счета. Например, ту же задачу можно будет решить еще и вот так:
18 × 17 = (20 × 15) + ((–2) × (–3)) = 300 + 6 = 306
Кстати, о таблице умножения: взгляните на столбцы и ряды однозначных чисел чуть ниже (я же обещал вам это показать, помните?). Перед нами встанет тот же вопрос, который встал перед юным Гауссом: чему будет равняться сумма всех чисел таблицы умножения? Не торопитесь, подумайте: вдруг у вас получится найти ответ каким-нибудь волшебным, потрясающим воображение способом? Ну а свой способ я предложу вам в конце главы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу