Авинаш Диксит - Стратегические игры. Доступный учебник по теории игр

Здесь есть возможность читать онлайн «Авинаш Диксит - Стратегические игры. Доступный учебник по теории игр» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стратегические игры. Доступный учебник по теории игр: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стратегические игры. Доступный учебник по теории игр»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
На русском языке публикуется впервые.

Стратегические игры. Доступный учебник по теории игр — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стратегические игры. Доступный учебник по теории игр», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«В в d , Н в e , Н в f , В в g », или для краткости «ВННВ»

Здесь мы зафиксировали последовательность четырех сценариев (историй ходов Эмили и Нины) в порядке расположения узлов d, e, f и g . Далее с помощью такой же сокращенной формы записи можно составить полный список всех 16 находящихся в распоряжении Талии стратегий:

ВВВВ, ВВВН, ВВНВ, ВВНН, ВНВВ, ВНВН, ВННВ, ВННН, НВВВ, НВВН, НВНВ, НВНН, ННВВ, ННВН, НННВ, НННН.

Анализ методом обратных рассуждений дерева игры на рис. 3.6, а также стрелки в узлах d, e, f и g показывают, что оптимальная стратегия Талии – НВВН.

Теперь выводы нашего анализа методом обратных рассуждений можно представить в виде описания стратегического выбора, сделанного каждой участницей игры: Эмили выберет Н из двух имеющихся у нее стратегий, Нина – НВ из четырех доступных стратегий, а Талия – НВВН из шестнадцати стратегий. Когда каждая из участниц анализирует следующие ветви и узлы дерева игры, чтобы составить прогноз конечных результатов текущих действий, она вычисляет оптимальные стратегии других участниц игры. Эта конфигурация стратегий (Н в случае Эмили, НВ – Нины и НВВН – Талии) представляет собой равновесие в данной игре, полученное методом обратных рассуждений.

Мы можем объединить оптимальные стратегии участниц игры, чтобы найти фактический путь игры, который приведет к равновесию обратных рассуждений. Эмили начнет с выбора Н. Нина, придерживаясь своей стратегии НВ, выберет в ответ на действие Эмили Н действие В. (Помните: стратегия НВ Нины означает «выбрать Н, если Эмили выбрала В, и В, если Эмили предпочла Н».) Согласно принятой нами договоренности, фактическое действие Талии после Н Эмили и В Нины (из узла f ) обозначается третьей буквой в нашем четырехбуквенном описании ее стратегий. Поскольку оптимальная стратегия Талии – НВВН, ее действие по пути игры – В. Таким образом, фактический путь игры состоит из действия Н, выбранного Эмили, и действия В, сделанного Ниной и Талией.

В итоге мы имеем три разные концепции:

1. Список доступных стратегий для каждого игрока, который, особенно для игроков, вступающих в игру на более поздних этапах, может быть очень длинным, поскольку необходимо перечислить их действия в ситуациях, соответствующих всем возможным предыдущим ходам других игроков.

2. Оптимальная стратегия, или исчерпывающий план действий, для каждого игрока. Эта стратегия должна описывать лучший выбор игрока в каждом узле, в котором, согласно правилам игры, игрок делает ход, даже если многие из этих узлов так и не будут достигнуты на фактическом пути игры. По сути, такое описание – это прогноз игроков, сделавших предыдущие ходы, относительно того, что бы произошло, если бы они предприняли другие действия, а значит, оно представляет собой важную часть определения их наилучших действий в предыдущих узлах. Совокупность оптимальных стратегий всех игроков образует равновесие обратных рассуждений.

3. Фактический путь игры в равновесии обратных рассуждений, найденный посредством объединения оптимальных стратегий всех игроков.

4. Преимущества порядка

В равновесии обратных рассуждений в игре «уличный сад» Эмили получает наилучший исход (выигрыш 4) благодаря возможности сделать первый ход. Решив не вносить вклад в создание сада, Эмили перекладывает бремя ответственности на двух других участниц игры, каждая из которых может получить следующий лучший исход только при условии, что обе выберут вариант «внести вклад». Большинство людей, не имеющих опыта ведения стратегических игр, придерживаются мнения, будто преимущество первого ходадолжно присутствовать во всех играх. Однако это не так. Во многих играх второй ход более выигрышный. Представьте себе стратегическое взаимодействие между двумя компаниями, продающими аналогичные товары по каталогам, скажем, Land’s End и L.L. Bean. Если бы одна из них выпустила каталог первой, вторая еще до выпуска своего каталога обрела бы шанс узнать, какие цены установила первая компания, и смогла бы предложить на свои товары более низкие цены, получив в результате огромное конкурентное преимущество.

Преимущество первого хода зависит от способности игрока взять на себя обязательство в связи с выгодной позицией и вынудить других игроков приспосабливаться к нему; преимущество второго ходаобусловлено гибкостью адаптации игрока, делающего ход вторым, к выбору других игроков. Что важнее в той или иной игре, обязательство или гибкость, определяется ее конкретной конфигурацией стратегий и выигрышей; общего правила здесь нет. На протяжении всей книги мы будем встречать примеры преимуществ обоих типов. Основная мысль (противоречащая общепринятому мнению) состоит в том, что преимущество не всегда получает игрок, который ходит первым. И она настолько важна, что мы сочли необходимым подчеркнуть ее с самого начала.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стратегические игры. Доступный учебник по теории игр»

Представляем Вашему вниманию похожие книги на «Стратегические игры. Доступный учебник по теории игр» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Авинаш Диксит - Стратегические игры
Авинаш Диксит
Хосе Капабланка - Учебник шахматной игры
Хосе Капабланка
libcat.ru: книга без обложки
Владимир Гусев
Отзывы о книге «Стратегические игры. Доступный учебник по теории игр»

Обсуждение, отзывы о книге «Стратегические игры. Доступный учебник по теории игр» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x