1 ...6 7 8 10 11 12 ...19 Если говорить об основах квантовой механики, Чирибелла с соавторами (см. главу 9) привели новый аргумент в пользу того, «почему» в квантовой механике должны действовать именно такие правила. А именно: они доказали, что только эти правила совместимы с некоторыми общими аксиомами теории вероятностей и одновременно с немного загадочной аксиомой о том, что «любые смешанные состояния могут быть очищены», то есть всякий раз в том случае, когда мы знаем о физической системе A не все, что можно знать, наше незнание должно полностью объясняться предположением о корреляциях между A и некоторой далекой системой B, такой, что мы должны иметь полные данные об объединенной системе AB.
В теории квантовых вычислений задача Бернштейна – Вазирани о «рекурсивной выборке Фурье», которой в лекциях 2006 г. я посвятил довольно много времени, была вытеснена моей задачей о «проверке коэффициентов Фурье» (см. главу 10). Задача Бернштейна – Вазирани осталась в истории как первая когда-либо предложенная задача с черным ящиком, которую квантовый компьютер доказуемо может решить сверхполиномиально быстрее, чем классический вероятностный компьютер, и, следовательно, как важный предшественник прорывных открытий Саймона и Шора. Но сегодня, если нам потребуется кандидат на роль задачи класса BQP/PH, иными словами, задачи, которую квантовый компьютер может решить с легкостью, но которая вообще не входит в классическую «полиномиальную иерархию», то представляется, что «проверка коэффициентов Фурье» во всех отношениях превосходит «рекурсивную выборку Фурье».
Несколько задач, которые излагались в моих лекциях 2006 г. как нерешенные, успели с тех пор изменить свой статус. Так, мы с Эндрю Друкером показали, что класс BQP/qpolyвходит в класс QMA/poly(к тому же доказательство получилось релятивизирующее), опровергнув тем самым мою гипотезу о том, что эти классы должны различаться по оракулам (см. главу 14). Кроме того, произошел справедливо отмеченный прорыв в теории квантовых вычислений: Джайн с соавторами доказал, что QIP = PSPACE(см. главу 17); это означает, что квантовые интерактивные системы доказательства не мощнее классических. В этом случае я по крайней мере угадал правильный ответ!
(На самом деле был еще один прорыв в исследовании квантовых интерактивных систем доказательства, о котором я не буду рассказывать в этой книге. Недавно мой постдок Томас Видик вместе с Цуёси Ито [8] T. Ito and T. Vidick, A Multi-prover Interactive Proof for NEXP Sound against Entangled Provers. In Proceedings of IEEE Symposium on Foundations of Computer Science (2012), pp. 243–252.
показал, что NEXP⊆ MIP*;это означает, что любую интерактивную систему доказательства с многими доказателями можно «привить» против того, чтобы эти доказатели втайне скоординировали свои отклики посредством квантовой запутанности.)
В главе 20 этой книги обсуждается предложенная Дэвидом Дойчем модель квантовой механики в присутствии замкнутых времениподобных траекторий, а также мой и Джона Ватруса новый (на тот момент) вывод о том, что модель Дойча обеспечивает в точности вычислительную мощность PSPACE.(Отсюда, в частности, следует, что путешествующие во времени квантовые компьютеры оказались бы не более мощными, чем классические компьютеры того же назначения, если вас почему-то интересовал этот вопрос.) Однако после 2006 г. вышли новые важные статьи, в которых подвергаются сомнению предположения, положенные в основу модели Дойча, и предложены альтернативные модели, что, как правило, ведет к вычислительной мощности меньшей, чем PSPACE.К примеру, одна из моделей, предложенная Ллойдом с соавторами, «всего лишь» позволит путешественнику во времени решить все задачи класса PP! Об этих достижениях речь пойдет в главе 20.
А что с нижними оценками сложности схемы (для специалистов по теоретической информатике это, по существу, кодовое слово, обозначающее «попытку доказать P≠ NP», точно так же как для физиков «замкнутые времени подобные траектории» – кодовое слово для обозначения путешествий во времени)? Рад сообщить, что и здесь после 2006 г. имеются интересные подвижки – безусловно, более серьезные, чем можно было тогда ожидать. В качестве примера скажу, что Рахул Сантханам при помощи интерактивных методик доказательства получил нерелятивизирующий результат, согласно которому класс PromiseMAне имеет схем какого бы то ни было фиксированного полиномиального размера (см. главу 17). Результат Сантханама, в частности, побудил меня и Ави Вигдерсона в 2007 г. сформулировать теорему о барьере алгебраизации (см. там же) – обобщение теоремы о барьере релятивизации Бейкера, Гилла и Соловея, сформулированной еще в 1970-е гг. (см. так же главу 17). Алгебраизация объясняет, почему методики интерактивного доказательства в попытке доказать P≠ NPпозволяют нам лишь дойти до определенного предела и не более того – к примеру, почему эти методики привели к сверхлинейной нижней оценке сложности схемы для класса PromiseMA,но не для класса NP, который всего лишь «чуть ниже его». Мы поставили задачу разработки новых методик поиска нижней оценки сложности схемы, которые позволяли бы убедительно обойти барьер алгебраизации. Эту задачу решил в 2010 г. Райан Уильямс своим прорывным доказательством того, что NEXP⊄ ACC 0(речь об этом идет в главе 17).
Читать дальше
Конец ознакомительного отрывка
Купить книгу