Поясняю. На мой взгляд, вполне вероятно, что я еще увижу при своей жизни действующие квантовые компьютеры (разумеется, возможно также, что и не увижу ). И если у нас действительно появятся масштабируемые универсальные квантовые компьютеры, то они почти наверняка найдут себе реальное применение (даже если не говорить о взломе шифров): мне кажется, что по большей части это будут специализированные задачи, такие как квантовое моделирование, и в меньшей степени – решение задач комбинаторной оптимизации. Если это произойдет, я, естественно, обрадуюсь не меньше прочих и буду гордиться, если какие-то результаты моей работы найдут применение в этом новом мире. С другой стороны, если бы кто-то завтра дал мне реальный квантовый компьютер, то ума не приложу, к чему лично я мог бы его применить: в голову лезут только варианты его использования другими людьми!
Отчасти именно поэтому, если бы вдруг кому-то удалось доказать, что масштабируемые квантовые вычисления невозможны , это заинтересовало бы меня в тысячу раз сильнее, чем доказательство их возможности. Ведь такая неудача подразумевала бы, что с нашими представлениями о квантовой механике что-то не так; это была бы настоящая революция в физике! Будучи прирожденным пессимистом, я полагаю , однако, что Природа не будет настолько добра к нам и что в конце концов возможность масштабируемых квантовых вычислений будет окончательно выявлена.
В общем, можно сказать, что я работаю в этой области не столько потому, что квантовые компьютеры могут принести нам какую-то пользу, сколько потому, что сама возможность создания квантовых компьютеров уже меняет наши представления об окружающем мире. Либо реальный квантовый компьютер можно построить, и тогда пределы познаваемого оказываются совсем не такими, как мы считали прежде; либо его построить нельзя, и тогда сами принципы квантовой механики нуждаются в пересмотре; или же существует, может быть, какой-то способ эффективно моделировать квантовую механику при помощи традиционных компьютеров, о котором никто пока не подозревает. Все три эти варианта сегодня звучат как пустой бездоказательный треп, но ведь по крайней мере один из них верен! Так что к какому бы результату мы ни пришли в конце концов, что тут можно сказать, кроме как сплагиатить в ответ фразу из того самого рекламного ролика: «Это интересно»?
Просматривая рукопись перед публикацией в виде книги, я больше всего удивился тому, как много всего произошло в этих областях между моментом, когда я читал этот курс впервые (2006 г.), и «настоящим» моментом (2013 г.). Эта книга замышлялась как посвященная глубоким вопросам, древним, как физика и философия, или по крайней мере возникшим одновременно с квантовой механикой и информатикой почти столетие назад. На повседневном уровне никак не ощущается, чтобы в дискуссии по этим вопросам что-то менялось. Поэтому необходимость существенно перерабатывать и расширять лекции по прошествии всего лишь шести лет стала для меня невыразимо приятной обязанностью.
Чтобы проиллюстрировать развитие вещей, позвольте мне привести неполный список достижений, о которых пойдет речь в книге, но о которых не могла идти речь на лекциях 2006 г. по той простой причине, что события эти на тот момент еще не произошли. Компьютер Watson фирмы IBM выиграл у чемпиона мира по «Своей игре» Кена Дженнингса, вынудив меня дополнить разговор об ИИ новым примером (см. главу 4), совершенно иным по характеру, чем предыдущие, такие как ELIZA и Deep Blue. Вирджиния Василевская-Уильямс, опираясь на работы Эндрю Стозерса, нашла способ перемножить две матрицы n × n с использованием всего O( n 2,373) шагов, слегка превзойдя при этом результат Копперсмита и Винограда O( n 2,376), который держался так долго, что число 2,376 начало уже восприниматься как природная константа (см. главу 5).
Достаточно серьезные события произошли в области криптографии на решетках, которая представляется самой перспективной базой для создания систем шифрования с открытым ключом, устойчивых даже против квантовых компьютеров (см. главу 3). Следует особо отметить, что Крейг Джентри смог решить задачу, которая никому не давалась 30 лет: он использовал решетки, чтобы предложить первые полностью гомоморфные криптосистемы . Эти системы позволяют клиенту доверить любые вычисления незащищенному серверу, при этом на сервер передаются зашифрованные входные данные, а обратно получаются зашифрованные результаты, и только сам клиент может расшифровать результат и удостовериться в его подлинности; сервер же не получает никакой информации о том, что именно ему поручили считать.
Читать дальше
Конец ознакомительного отрывка
Купить книгу