Минерва спросила, может ли Пегасский конь, оставив двадцать светлых пятен Любопытству, пойти к Гиппокренскому источнику, который давным-давно загрязнен, разрушен и замутнен быками, свиньями и ослами, пойти и посмотреть, нельзя ли копытами и зубами избавить то место от всей этой сволочи, дабы музы, увидев, что вода источника снова приведена в прежнее прекрасное состояние, соблаговолили снова встречаться там и устраивать свои собрания и торжества. А на этом месте неба пусть воссядут Восторг, Восхищение, Энтузиазм, Пророчество, Учение и Талант с их сродниками и слугами, откуда вечно да проливают вниз божественную воду по капелькам для омовения душ и для упоения чувств смертных.
165. – Уберите, – сказал Нептун, – отсюда, если вам угодно, боги, ту Андромеду, что руками Невежества была привязана к утесу Упорства цепями Превратных Толкований и Ложных Мнений на съедение киту Погибели и окончательное уничтожение волнами неустойчивого и бурного моря. Отдайте ее в предусмотрительные и дружеские руки ревностного, трудолюбивого и быстрого Персея, чтобы он, развязав и вызволив ее от недостойных препон, взял себе как достойное приобретение. А кем сменить ее, о том пусть озаботится Юпитер.
166. – Желаю, – ответил Отец богов, – чтоб ей наследовала Надежда, ибо нет такого трудного и неисполнимого дела, к достижению коего обещанием плодов работы Надежда не зажгла бы все души, имеющие в себе чувство какой-либо цели.
167. – Пусть наследует, – подтвердила Паллада, – этот священнейший щит человеческой груди, эта божественная основа всех зданий Доброты, эта надежнейшая опора Истины: она, которая никогда ни из-за какого нелепого случая не разуверяется, ибо чувствует в себе самой семена собственной годности, которые не могут быть вырваны у нее никаким насильническим набегом; она, вследствие которой, как слышно, Стильбон одержал победу над врагами, тот Стильбон, говорю, который, спасшись из пламени, испепелившего у него отечество, дом, жену и достатки, ответил Деметрию: «Все свое ношу с собой!» – ибо с ним были Сила, Справедливость, Благоразумие, от которых надеялся иметь утешение, спасение и поддержку в жизни, и ради коих легко презреть сладость жизни.
168. – Оставим всех их, – сказал Мом, – и перейдем поскорее к тому, как нам распорядиться с этим Треугольником, или Дельтой.
Ответила копьеносная Паллада:
169. – По-моему, хорошо бы отдать ее Кузанскому кардиналу, не сумеет ли он с помощью Треугольника освободить этих обезумевших геометров от докучливого изыскивания квадратуры круга, выверив меж собой и треугольник, и круг согласно своему божественному принципу соизмеряемости и совпадения самой большой и самой малой фигуры, т. е. одной фигуры, состоящей из минимального, и другой – из максимального числа углов.
Пусть будет, стало быть, начерчен треугольник с вписанным и описанным около него кругом. Тогда отношением этих двух линий (из коих одна идет от центра к точке касания внутреннего круга с внешним треугольником, другая – к одному из углов треугольника) достигнется эта так долго и столь тщетно разыскиваемая квадратура.
Тут вмешалась Минерва и сказала:
170. – А я, чтоб показать не меньшее расположение к музам, хочу подарить геометрам несравненно больший подарок, чем этот и другие. Ноланец же за то, что я ему первому это открыла и чрез него даю во всеобщее пользование, должен принести мне не только одну, но 100 гекатомб, ибо благодаря прозрению равенства, существующего между самым большим и самым меньшим, между внешним и внутренним, началом и концом, я даю ему наиболее плодотворную, богатую, ясную и безопасную дорогу, которая покажет не только, как квадрат становится равным кругу, но больше того, каждый треугольник, каждый пятиугольник и, наконец, какая угодно и сколь угодно многоугольная фигура; отсюда и в твердых телах становятся равными линия линии, поверхность – поверхности, площадь – площади, тело – телу.
Саулин.Это будет прекраснейшая вещь, бесценнейшее сокровище космометров!
София.Настолько превосходная и достойная, что, по-моему, наверняка уравновесит собою изобретение всего остального в геометрической области. Ведь отсюда же вытекает другое, более полное, более великое, более богатое, более легкое, более изысканное, более краткое и нисколько не менее очевидное: как любая многоугольная фигура соизмеряется линией и поверхностью круга, круг, в свою очередь, линией и поверхностью какого угодно многоугольника.
Читать дальше
Конец ознакомительного отрывка
Купить книгу