Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Здесь есть возможность читать онлайн «Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Array Литагент «Центрполиграф», Жанр: foreign_edu, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия чисел. Математическая мысль от Пифагора до наших дней: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия чисел. Математическая мысль от Пифагора до наших дней»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Магия чисел. Математическая мысль от Пифагора до наших дней — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия чисел. Математическая мысль от Пифагора до наших дней», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вторая деталь, которую следует постоянно учитывать, касается процесса, посредством которого математические выводы появляются на базе постулатов. Он и именуется дедукцией. Постулаты принимаются на веру без дальнейших доказательств. Любое утверждение, подразумеваемое постулатами, считается справедливым просто по определению. В задачи математики входит поиск утверждений, вытекающих из постулатов.

Здесь вполне уместно отметить, что пользоваться можно только системой умозаключений, согласованной между математиками. Эта система именуется формальной логикой. Со времени своего появления в Древней Греции и до настоящего времени она получила широкое распространение, классическая же логика Аристотеля является лишь разделом формальной или математической логики, традиционно используемой. Подобно постулатам, на которые она опирается, логика стала предметом всеобщего соглашения между математиками. Она не была навязана им судьбой или непреложной необходимостью. Данный вопрос также нуждается в дополнительном освещении, но не в данный момент.

Мы не затрагиваем вопрос, по какой причине математики отдают предпочтение той или иной системе постулатов в различных случаях, что легко себе представить, или почему они используют один метод рассуждений вместо другого. Так уж исторически сложилось, что геометры из глубочайшей древности перешли к определенным продуктивным методам размышлений, подсказанным им их практическим опытом. Прежде чем они осознали, что делают, они уже размышляли дедуктивно. Их умозаключения всегда оказывались последовательными.

Исходя из этого отдельные философы-математики вывели наивеличайшее и нисколько не логичное утверждение: логика есть необходимость, неминуемая судьба, навязанная человеческому разуму из ниоткуда. Логика не была изобретением человека, а только лишенным временной привязки даром человечеству от бессмертных богов. В той или иной форме эта вера просуществовала ни много ни мало более двух тысяч лет. Сомнения в ее полезности появились только совсем недавно.

Дальнейшие взаимозачеты могут слишком усилить претензии одной школы философии по указанным базовым вопросам за счет ее конкурентов. Действительно ли Фалес (или любой другой человек) изобрел дедуктивный метод, или он просто наткнулся на него? Такой же вопрос мы поднимали в отношении чисел: кто-то изобрел числа или их просто нашли? Нет необходимости повторять дедуктивные рассуждения, которые уже прозвучали о числах. Каждый вправе выбрать ответ, который ему по нраву. Великие умы не приходили к согласию. Что касается нас, нам хватит и того, чтобы продолжить узнавать, как возникло это непримиримое разногласие во мнениях.

Что станет с египетскими и вавилонскими изысканиями в области чисел и всего остального в рамках суженной математической концепции, описанной выше? Поскольку ни те ни другие никогда ничего не доказывали (насколько это известно на настоящий момент), их вклад не имел ничего общего с математикой. Никого не заставляют принять столь сбивающий с толку и столь оскорбительный вывод, да мало кто и примет его. В обыкновенных исторических записках, возможно, нет ни необходимости, ни смысла проводить четкую границу между тем, что следует именовать математикой, и тем, что не заслуживает носить этот громкий титул. Настоятельное требование доказательств как критерий – это современный подход. Если пользоваться только им, то придется отвергнуть слишком многое из того, что наши предки именовали математикой, и сильно посягнуть на наши собственные достижения.

Компромиссом было бы признать все, что большинством компетентных математиков конкретной эпохи было принято как доказанное, не важно, выдержало ли это критику позднейших поколений математиков или было признано ошибочным или неполным. Но тогда потребовался бы тест на признание, что есть по сути доказательство. Те, кто пытался подтвердить свои выводы, могут считаться математиками, а остальные – эмпирики.

Разграничение достаточно известно редакторам математической периодики, которым положено решать, является ли представленная им на публикацию работа математической или какой-либо еще. Воспользуемся примером из арифметики. Прилежный расчетчик осознает после сорока лет нещадных трудов, что 8 и 9 – единственные числа меньше миллиарда миллиардов, отличные друг от друга только на 1, для которых характерно следующее: оба числа являются точными степенями, основания и показатели которых также отличаются на единицу (8 = 2 3, 9 = 3 2). Истрепав несколько калькуляторов и немного собственной нервной системы, потенциальный математик считает дело законченным и принимает решение обнародовать свое исследование. Итак, он пишет редактору любимого математического журнала о своей гипотезе: «Единственными точными степенями, отличными на 1, являются 8 и 9». – «Возможно, вы правы, – отвечает редактор, – но как вы это докажете? С надеждой на известие от вас в ближайшем будущем возвращаю вам вашу рукопись». С тех пор все ждет ответа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия чисел. Математическая мысль от Пифагора до наших дней»

Представляем Вашему вниманию похожие книги на «Магия чисел. Математическая мысль от Пифагора до наших дней» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия чисел. Математическая мысль от Пифагора до наших дней»

Обсуждение, отзывы о книге «Магия чисел. Математическая мысль от Пифагора до наших дней» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x