Это было красивое решение. Цвета кварков давали дополнительную степень свободы, и, значит, принцип Паули не нарушался. Утроение количества видов кварков означало, что скорость распада нейтрального пиона можно предсказать с точностью. И никто не мог ожидать, что цветной заряд проявится в экспериментах, ведь это свойство кварков, а кварки заключены внутри белых адронов. Цвет нельзя увидеть, потому что природа требует, чтобы все наблюдаемые частицы были белыми.
«Мы постепенно поняли, что [цветная] переменная решает все вопросы! – объяснял Гелл-Манн. – Она улучшает статистику и при этом не вынуждает нас использовать сумасшедшие новые частицы. Потом мы поняли, что она вдобавок может решить проблемы с динамикой, потому что на ней можно было построить калибровочную теорию SU(3), теорию Янга – Миллса» [86].
К сентябрю 1972 года Гелл-Манн и Фрицш подробнее разработали модель, состоящую из трех кварков с дробными зарядами, которые имели три аромата – верхний, нижний и странный – и три цвета и были связаны системой из восьми цветных глюонов – переносчиков сильного цветового взаимодействия. Гелл-Манн представил модель на конференции по физике высоких энергий, которая проводилась в честь открытия Национальной ускорительной лаборатории в Чикаго.
Но его уже начали одолевать сомнения. Больше всего Гелл-Манна беспокоил статус кварков и механизм, обеспечивающий конфайнмент [87], и он предпочитал не слишком распространяться о теории. Он упоминал вариант модели с одним глюоном и подчеркивал, что кварки и глюоны – «воображаемые».
Когда они с Фрицшем дошли до написания лекции, их обуяла нерешительность. «Готовя письменный вариант, – позднее писал Гелл-Манн, – к сожалению, мы поддались только что упомянутым сомнениям, и мы ушли в технические вопросы» [88].
Эти колебания не так уж трудно понять. Если цветные кварки действительно всегда заключены внутри белых барионов и мезонов, так что их цветной и дробный электрический заряд нельзя наблюдать, тогда можно сказать, что любые размышления об их свойствах – пустая болтовня.
Теоретики подошли очень близко к большому синтезу: слиянию теорий квантового поля на основе симметрии SU(3) × SU(2) × U(1), которое позже стало известно как Стандартная модель. Этот синтез должен был подготовить теоретическую основу для экспериментальной физики элементарных частиц в последующие 30 лет. Эта нерешительность была просто глубоким вдохом перед прыжком в воду.
Фактически дразнящие свидетельства существования кварков появились всего за несколько лет до того во время высокоэнергетических столкновений электронов и протонов. Результат экспериментов, проведенных в Стэнфордском центре линейных ускорителей (SLAC) в Калифорнии, сильно намекал, что протон состоит из точечных частиц.
Однако было неясно, кварки ли эти точечные частицы. Что еще больше сбивало с толку, результаты также предполагали, что составные части внутри протона вовсе не находятся в железной хватке, а ведут себя так, будто могут совершенно свободно бродить по своим просторным жилищам. Как это совмещалось с идеей конфайнмента?
Работа теоретиков подходила к концу. Стандартная модель была почти закончена. Теперь пришла очередь экспериментаторов.
6
Переменные нейтральные токи
Глава, в которой у протонов и нейтронов оказывается внутренняя структура, а предсказанные нейтральные токи слабого ядерного взаимодействия находятся, теряются и находятся вновь
В космических лучах происходят некоторые самые высокоэнергетические столкновения частиц, иногда их энергия гораздо выше энергии, которой можно достичь даже в современных коллайдерах [89]. Но откуда берутся лучи, непонятно, и какие частицы и энергии становятся причиной наблюдаемых событий, неизвестно. Успех экспериментов с космическими лучами зависит от случайного обнаружения новых частиц или новых процессов, воспроизвести которые может оказаться очень сложно.
Несмотря на успешные эксперименты с космическими лучами, позволившие открыть позитроны, мюоны, пионы и каоны за два десятилетия между 1930-ми годами и началом 1950-х, для дальнейшего прогресса в физике частиц требовалось сначала разработать более мощные искусственные ускорители.
Первые ускорители были сконструированы во второй половине 1920-х годов. Это были линейные ускорители, в которых ускорение электронов и протонов происходило за счет разгона их через линейную последовательность осциллирующих электрических полей. На одном таком ускорителе Джон Кокрофт и Эрнест Уолтон в 1932 году разогнали протоны до высокой скорости и затем выстреливали ими по неподвижным мишеням – ядрам, таким образом осуществив первые искусственно вызванные ядерные реакции [90].
Читать дальше
Конец ознакомительного отрывка
Купить книгу