Теоремы Гёделя были превозносимы как «первые новые теоремы чистой логики за две тысячи лет». Но это не так: теоремы Гёделя говорят о том, что можно, а что нельзя доказать, а доказательство – это физический процесс. Ничто в теории доказательства не является делом чистой логики. Новый способ, с помощью которого Гёдель смог доказать общие утверждения о доказательствах, зависит от определенных допущений о том, какие физические процессы могут или не могут представлять абстрактный факт таким образом, чтобы наблюдатель имел возможность обнаружить его и убедиться в нем. Гёдель вычленил такие допущения, превратив их в явное и очевидное обоснование своих выводов. Его результаты самоочевидным образом подтверждались не потому, что были «чисто логическими», а потому, что математики находили эти допущения самоочевидными.
Одно из сделанных Гёделем допущений было традиционным: доказательство может иметь только конечное число шагов. Интуитивное обоснование этого допущения состоит в том, что мы конечные существа и никогда не смогли бы мысленно охватить в буквальном смысле бесконечное число утверждений. Кстати, именно эта интуиция стала причиной беспокойства многих математиков, когда в 1976 году Кеннет Эппел и Вольфганг Хакен использовали компьютер для доказательства знаменитой «гипотезы четырех красок» (о том, что, используя всего четыре разных цвета, можно раскрасить любую карту, нарисованную на плоскости, так, чтобы никакие две соседние области не были одного цвета). Их программа потратила сотни часов машинного времени, и это означало, что этапы доказательства, будь оно записано на бумаге, не смог бы прочитать ни один человек за много жизней, не говоря уже о том, чтобы признать его самоочевидным. «Следует ли верить на слово компьютеру, утверждающему, что гипотеза четырех цветов доказана?» – задавались вопросом скептики, хотя им и в голову никогда не приходило составить каталог всех импульсов всех нейронов собственного мозга в процессе принятия относительно «простого» доказательства.
Такое беспокойство может показаться еще более обоснованным в применении к гипотетическому решению с бесконечным числом шагов. Но что такое «шаг» и что такое «бесконечный»? В V веке до н. э. Зенон Элейский на основе похожих интуитивных соображений пришел к выводу, что Ахиллес никогда не обгонит черепаху, если у черепахи было преимущество на старте. Ведь к тому времени, когда Ахиллес достигнет места, где черепаха находится сейчас, она немного продвинется вперед. К тому времени, когда он достигнет этой новой точки, она продвинется еще чуть-чуть и так до бесконечности. Таким образом, чтобы догнать черепаху, Ахиллесу потребуется выполнить бесконечное число шагов, которое он, будучи конечным существом, якобы выполнить не сможет. Но то, что способен сделать Ахиллес, невозможно обнаружить с помощью чистой логики. Это полностью зависит от того, что ему позволяют сделать действующие законы физики. И если эти законы говорят, что он обгонит черепаху, то он ее обгонит. В соответствии с классической физикой для того, чтобы сравняться с черепахой, требуется бесконечное количество шагов вида «переход на текущее место нахождения черепахи». В этом смысле данная операция является вычислительно бесконечной. Если это построение рассматривать как доказательство того, что одна абстрактная величина станет больше другой при выполнении данного набора действий, то это будет доказательство с бесконечным количеством шагов. Однако соответствующие законы обозначают это доказательство как физически конечный процесс – и только это имеет значение.
Интуиция Гёделя относительно шагов и конечности, насколько нам известно, действительно учитывает некоторые физические ограничения на процесс доказательства. Квантовая теория требует дискретных этапов, и ни один из известных способов взаимодействия физических объектов не позволил бы сделать бесконечное количество шагов, прежде чем получить измеримый результат. (Возможно, однако, такое, что за всю историю Вселенной будет совершено бесконечное количество шагов – я объясню это в главе 14.) Классическая физика, окажись она истинной (что исключено), не согласовывалась бы с такого рода интуициями. Например, непрерывное движение классических систем позволило бы осуществлять «аналоговое» вычисление, которое не является пошаговым и репертуар которого существенно отличается от универсальной машины Тьюринга. Известны некоторые примеры хитрых классических законов, в случае действия которых бесконечный объем вычислений (бесконечный как по стандартам машины Тьюринга, так и квантового компьютера) можно было бы выполнить физически конечными методами. Безусловно, классическая физика несовместима с результатами бесчисленных экспериментов, поэтому размышления о том, какими могли бы быть «действительные» классические законы физики, носят искусственный, чисто спекулятивный характер; однако эти примеры показывают, что никто не может доказать, независимо от знания физики, что доказательство должно состоять из конечного числа шагов. Эти же соображения применимы к интуиции о том, что должно быть конечное количество правил вывода, и что они должны быть «применимы непосредственно». Ни одно из этих требований не имеет смысла в теории: это физические требования. Гильберт в своем влиятельном эссе «О бесконечном» (On the Infinite) ехидно высмеивал идею о том, что требование «конечного числа шагов» является существенным. Однако вышеуказанный аргумент показывает, что он ошибался: это требование существенно, и оно вытекает только из его собственной и других математиков физической интуиции.
Читать дальше
Конец ознакомительного отрывка
Купить книгу