Дайте философу понятие треугольника, и пусть он найдет свойственным ему способом, как относится сумма его углов к величине прямого угла. У него есть только понятие фигуры, ограниченной тремя прямыми линиями, и вместе с ней понятие о таком же количестве углов. Сколько бы он ни размышлял над этим понятием, он не добудет ничего нового. Он может расчленить и сделать отчетливым понятие прямой линии, или угла, или числа три, но не откроет новых свойств, вовсе не заключающихся в этих понятиях. Но пусть за тот же вопрос возьмется геометр. Он тотчас начнет с конструирования треугольника. Зная, что два прямых угла имеют такую же величину, как все смежные углы, исходящие из одной точки и лежащие на одной прямой, он продолжает одну из сторон своего треугольника и получает два смежных угла, сумма которых равна двум прямым углам. Внешний из этих углов он делит, проводя линию, параллельную противоположной стороне треугольника, и замечает, что отсюда получается внешний смежный угол, равный внутреннему, и т. д. Так, руководствуясь все время созерцанием, он цепью выводов приходит к совершенно очевидному и вместе с тем общему решению вопроса.
Математика конструирует не только величины (quanta), как это делается в геометрии, но и величину как таковую (quantitas), как это делается в алгебре, совершенно отвлекающейся от свойств предмета, который должно мыслить согласно такому понятию величины. Она избирает себе при этом определенные обозначения для всех конструированных величин вообще (чисел), каковы сложение, вычитание, извлечение корня и т. д.; затем, обозначив общее понятие величин в их различных отношениях, она изображает в созерцании соответственно определенным общим правилам все операции, производящие и изменяющие величину; когда одна величина должна быть разделена другой, она соединяет их знаки по обозначающей форме деления и т. п. и, таким образом, с помощью символической конструкции, так же как геометрия с помощью остенсивной, или геометрической, конструкции (самих предметов), достигает того, чего дискурсивное познание посредством одних лишь понятий никогда не может достигнуть.
Какова причина этого столь различного положения философа и математика, когда один из них избирает свой путь исходя из понятий, а другой – опираясь на созерцания, которые он показывает a priori сообразно понятиям? Причина этого ясна из основ трансцендентального учения, изложенного выше. Здесь речь идет не об аналитических положениях, которые можно получить посредством одного лишь расчленения понятий (в этом деле философ, без сомнения, одержал бы верх над своим соперником), а о синтетических положениях, и притом таких, которые должны быть познаны a priori. В самом деле, я должен обратить внимание не на то, что я мыслю в своем понятии треугольника (это было бы лишь дефиницией треугольника), а должен выйти за пределы этого понятия к свойствам, которые не заключаются в нем, но все же принадлежат к нему. Это возможно лишь в том случае, если я определяю свой предмет согласно условиям или эмпирического, или чистого созерцания. Первый прием может привести только к эмпирическому положению (путем измерения углов треугольника); такое положение не обладает всеобщностью и еще в меньшей степени необходимостью; поэтому о такого рода положениях здесь не пойдет речи. Второй же прием – это математическое, в данном случае геометрическое, конструирование, посредством которого я в чистом созерцании, точно так же как в эмпирическом, присоединяю многообразное, относящееся к схеме треугольника вообще, стало быть, к его понятию, благодаря чему должны, без сомнения, получаться общие синтетические положения.
Следовательно, я напрасно философствовал бы о треугольнике, т. е. размышлял бы дискурсивно, не будучи в состоянии пойти дальше одной только дефиниции, с которой к тому же мне следовало начать. Существует, правда, трансцендентальный синтез из одних лишь понятий, который опять-таки удается только философу, но он касается лишь вещи вообще, при наличии которой восприятие ее может принадлежать к возможному опыту. Но в математических проблемах речь идет не об этом и вообще не о существовании, а о свойствах предмета самих по себе, лишь поскольку они связаны с его понятием.
В приведенном примере мы старались только ясно показать, как велико различие между дискурсивным применением разума согласно понятиям и интуитивным применением его посредством конструирования понятий. Естественно, возникает вопрос, какова причина, делающая необходимым такое двойное применение разума, и по каким условиям можно узнать, имеет ли место только первое или также и второе применение разума.
Читать дальше
Конец ознакомительного отрывка
Купить книгу