В сущности, любая крупная область космоса – своего рода чашка Петри, уникальная и независимая. Космологи и астрономы вовсю пользуются этим обстоятельством, когда анализируют свойства звезд и галактик по мере развития по космической шкале времени. Объекты в центре любой достаточно большой части Вселенной никогда не подвергались прямому воздействию объектов, находящихся в центре других отдельных больших частей, никогда не имели к ним никакого отношения. Каждый из них – словно уникальный остров, развившийся по своей собственной траектории, однако управляемый теми же универсальными физическими законами, что и все остальные острова. Как ни парадоксально, это всего лишь расширение принципа Коперника: во Вселенной нет никаких особых областей, однако они вполне могут слегка отличаться друг от друга.
В ту же игру можно сыграть и при поиске жизни. Однако наша Солнечная система, вероятно, несколько маловата и поэтому обеспечила нам лишь одну чашку Петри. Ее планеты склонны к кросс-контаминации, к обмену химическими веществами и организмами, когда астероидные удары расшвыривают планетный материал по межпланентному пространству. Гораздо лучше было бы искать жизнь во Вселенной, перебирая одну звезду за другой, однако, как мы видели, передача материала по межзвездному пространству тоже приводит к контаминации. Еще лучше было бы подразделить крупную галактику вроде Млечного Пути на зоны таким образом, чтобы каждая из них представляла собой потенциально неповторимую выборку из того множества траекторий, которыми может развиться жизнь. А можно пойти еще дальше – рассмотреть и межгалактическое пространство, считать независимыми экспериментальными инкубаторами целые галактики. Если мы сможем идентифицировать и численно выразить природу любой жизни, которая обнаружится в этих местах, то сумеем свести воедино гигантскую карту траекторий, а потом посмотреть, какими универсальными вселенскими законами управляется это буйство.
Но вот что забавно: мы уже знаем, что подобный подход оправдывает себя в науке, и этому мы обязаны непосредственно Антони ван Левенгуку, сидевшему в своей комнате в Дельфте в 1674 году. Когда Левенгук увидел микроскопические организмы, кишащие в каждой капельке воды, во всех естественных отверстиях и выделениях людей и животных, то невольно заложил план исследования всех укромных мест, где может таиться жизнь. А сегодняшние ученые уже относятся к процедуре контролируемой выборки микроскопической жизни как к данности. Например, чтобы выявить новые виды живых существ, обитающие в суровых условиях подземных водохранилищ или глубоко под антарктическими льдами [225] Прекрасный пример – исследование вод так называемого озера Восток, которое залегает под ледяным щитом толщиной около четырех километров и имеет размеры примерно 250 на 50 километров. Вода в этом подледном озере, скорее всего, была совершенно изолирована в течение десятков тысяч лет, а может быть, и дольше.
, ученые трудятся не покладая рук, чтобы собрать неконтаминированные пробы. Древние экосистемы зачастую содержат организмы, которые развивались без постороннего вмешательства в течение тысяч, а иногда и миллионов лет, отрезанные от остального мира. Если рассмотреть эти уединенные микрокосмы, можно узнать очень много о развивающихся в них невероятных биологических стратегиях, а главное – исследовать, какие глубинные биологические принципы стоят за всем этим.
Проделать то же самое в космосе – мягко говоря, чудовищно самонадеянная и оптимистическая идея. Однако может статься, что в результате мы обретем знания, которые оправдают все. Еще в главе 1 я коротко рассказал о гипотезе множественной Вселенной, очень перспективном способе объяснить «совпадение» космической тонкой настройки и зарождения жизни. Мы сможем проверить эту гипотезу, а жизнь станет лакмусовой бумажкой. Представьте себе, что мы будем в состоянии определить значения и форму физических постоянных и законов, которые определяют существование и распространенность жизни во Вселенной. Заручившись подобной информацией, мы, в принципе, могли бы предсказать, насколько распространена во множественной Вселенной жизнь, подобная нашей. Иначе говоря, мы бы вычислили, каково наше значение во всей совокупности всех возможных реальностей [226] Сколько еще Вселенных может быть во множественной Вселенной, не знает никто. Некоторые так называемые хаотические теории инфляции (которые подводят физическую базу под то, что Вселенная расширяется во что-то большее) предполагают, что разных Вселенных, возможно, 10 10 и все это еще в 16 степени. См., например, A. Linde, V. Vanchurin. How Many Universes Are in the Multiverse? // Physical Review D 81, no. 083525 (2010): 1–11.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу