В распоряжении рыб имеются самые разнообразные чувства, некоторые из которых нам совершенно не знакомы. У них есть органы боковой линии — их основу составляют чувствительные к давлению бугорки, которые расположены под кожей в проходящих вдоль тела продольных каналах, соединенных с внешней средой порами, — обладающие поразительной чувствительностью к малейшим движениям окружающей их воды. Именно эти органы обеспечивают косяку рыб поразительную способность к синхронному изменению направления.
Живущая в Мексике слепая пещерная рыба [40] Здесь речь идет о полосатом астианаксе, Astyanax fasciatus.
узнает о присутствии и расположении окружающих ее предметов при помощи волн давления, которые порождает ее собственное движение в воде. Когда она плывет в темноте, органы боковой линии регистрируют характерные отражения, которые производят эти предметы, и рыба может научиться перемещаться по маршрутам, отмеченным этими жидкостными «ориентирами» [41] de Perera, T. B. (2004). ‘Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus’, Animal Behaviour, 68 (2). P. 291–295.
.
Другие рыбы, в том числе, например, индийская рыба-ползун [42] Или анабас, Anabas testudineus.
, используют визуальные ориентиры. Этот вид живет либо в прудах, либо в быстрых ручьях. Исследователи взяли рыб из этих двух очень разных сред обитания и научили их находить вознаграждение, пробираясь через последовательность узких проходов, установленных в их аквариумах. Сначала рыбы, живущие в текучей воде, показывали гораздо лучшие результаты, чем их собратья из стоячей воды, но, когда у каждого проема поставили по маленькому растению, ситуация сменилась на противоположную: теперь в соревновании побеждали обитатели прудов.
По-видимому, рыбы, живущие в быстро движущейся воде, не обращают особого внимания на растения и тому подобные непостоянные объекты, потому что течение перемещает их слишком быстро, чтобы их можно было использовать в качестве ориентиров. Прудовые же рыбы, напротив, могут рассчитывать, что предметы в большинстве своем остаются на одном и том же месте, и поэтому научились обращать на них более пристальное внимание [43] Sheenaja, K. K., & Thomas, K. J. (2011). ‘Influence of habitat complexity on route learning among different populations of climbing perch (Anabas testudineus Bloch, 1792)’, Marine and Freshwater Behaviour and Physiology, 44 (6). P. 349–358.
.
Несколько разных видов рыб, в том числе угри и акулы, чувствительны к электрическим полям и используют электрические ориентиры. У слабоэлектрических рыб [44] К этой категории относят рыб, способных генерировать электрические разряды величиной менее 1 В (тем не менее у некоторых слабоэлектрических рыб величина разряда может составлять до 7 В). Они используют электрические поля не для нападения или защиты, а для локации и внутривидовой сигнализации.
, например, есть специальный орган, позволяющий им замечать изменения электрического поля, существующего в окружающей их воде. Одна из таких рыб, живущая на дне африканских озер, ведет ночной образ жизни [45] Речь идет о гнатонеме Петерса, он же нильский слоник, или убанги ( Gnathonemus petersii ).
и, подобно индийской рыбе-ползуну, способна находить отмеченные ориентирами проемы в препятствиях, используя этот метод. Но у нее есть одно радикальное отличие: она делает это в полной темноте [46] Cain, P., & Malwal, S. (2002). ‘Landmark use and development of navigation behaviour in the weakly electric fish Gnathonemus petersii (Mormyridae; Teleostei)’, Journal of Experimental Biology, 205 (24). P. 3915–3923.
.
Даже насекомые иногда используют для обнаружения предметов информацию, передаваемую электрическими сигналами.
Когда мы снимаем с упаковки пластиковую пленку, она часто прилипает к рукам и не хочет от них отцепляться. При прикосновении к металлической поверхности, особенно если до этого пройти по ковру из синтетических волокон, можно почувствовать легкий электрический разряд. Эти любопытные явления вызваны накоплением статического электричества, и они, как ни странно, играют важную роль в существенном с точки зрения экологии процессе опыления цветов пчелами.
Шмели могут чувствовать статическое электрическое поле, окружающее цветки, и способны даже различать разные цветы по конфигурации электрического поля, которое они создают. Пчелы улавливают эти слабые сигналы при помощи чувствительных волосков, которые отклоняются электрическими полями, окружающими цветы. С помощью этой информации они отличают цветы, дающие много нектара, от цветов менее питательных [47] Clarke, D., Morley, E., & Robert, D. (2017). ‘The bee, the flower, and the electric field: electric ecology and aerial electroreception’, Journal of Comparative Physiology A, 203 (9). P. 737–748.
.
Читать дальше