Но этим дело не закончилось. Потом Виттлингер позволил «обработанным» муравьям самостоятельно пройти от гнезда до кормушки, соответственно, удлиненными или укороченными шагами. В этом случае они вели себя почти точно так же, как нормальные муравьи, и правильно оценивали местоположение гнезда. Это было логично, потому что путь от гнезда до кормушки и обратный путь занимали одно и то же число шагов, будь то на удлиненных или на укороченных ногах.
При помощи солнечного компаса и одометра муравей-бегунок может найти прямой путь к отправной точке своего путешествия, то есть к гнезду. Более того, он способен найти этот путь независимо от того, каким запутанным был его маршрут от дома. Превосходный пример действия счисления пути. Однако, как и счисление пути, применяемое человеком, муравьиная система несовершенна. В ней накапливаются ошибки, и, поскольку Cataglyphis могут уходить за сотни метров от своего гнезда, суммарная величина этих ошибок может становиться значительной.
Чтобы выяснить, как муравьи справляются с этим недостатком, Венер установил по обе стороны от муравьиного гнезда, на равном расстоянии от него, два черных цилиндра. Муравьи вскоре научились использовать эти заметные ориентиры для обнаружения своего дома. Однако было неясно, на какие именно характеристики цилиндров муравьи обращали внимание. Возможно, они определяли местоположение гнезда, измеряя его удаление от двух цилиндров, а может быть, они определяли углы между цилиндрами и гнездом, то есть использовали своего рода метод триангуляции. Тогда Венер и его коллеги перенесли муравьев на опытную площадку, расположенную на большом расстоянии от их настоящего дома, и воссоздали там ту же конфигурацию, но с некоторыми изменениями.
Когда исследователи удвоили расстояние между цилиндрами (не изменяя их размеров), муравьи не стали, как можно было бы ожидать, искать гнездо посередине между ними. Вместо этого они скапливались вблизи одного или другого цилиндра. Но когда размеры цилиндров тоже увеличили в два раза, муравьи повели себя совсем по-другому: теперь они стремились к точке, расположенной посередине между ними.
Венер заключил, что муравьи ищут положение, из которого цилиндры выглядят так же, как они выглядели на первом, обучающем этапе эксперимента. Перемещенные муравьи искали свое гнездо, пытаясь совместить двумерный «снимок» исходной конфигурации с тем, что они видели теперь. Поэтому они бегали взад и вперед, пока им не удалось добиться наилучшего совпадения заученного «шаблона» с изображением цилиндров, которое регистрировали их сложные фасеточные глаза.
Как мы помним, потовые пчелы Уоррента, отправляясь в свои экспедиции, разворачивались и смотрели на свое гнездо с разных сторон. Муравьи-бегунки делают нечто очень похожее. Они совершают «тренировочные прогулки», во время которых они ходят вокруг своего гнезда постепенно расширяющимися кругами. Время от времени они ненадолго останавливаются и смотрят в сторону почти невидимого входа в гнездо. Таким образом они запоминают виды, открывающиеся с разных точек.
Возвращаясь после поисков пищи, они вспоминают эти изображения и используют их, чтобы найти обратную дорогу. Такая система сопоставления изображений не требует от муравья понимания геометрических взаимосвязей между ориентирами. В этом отношении муравей отличается от медоносной пчелы, которая, как это ни удивительно, способна запомнить положение нескольких ориентиров относительно источника пищи, так же как запоминает его североамериканская ореховка [109] Wehner, R., Räber, F. (1979). ‘Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae)’, Experientia, 35. P. 1569–1571; Cartwright, B. A., Collett, T. S. (1983). ‘Landmark learning in bees: experiments and models,’ Journal of Comparative Physiology A, 151. P. 521–543; Möller, R., Vardy, A. (2006). ‘Local visual homing by matched-filter descent in image distances’, Biological Cybernetics, 95. P. 413–430; Zeil, J., Hofmann, M. I., Chahl, J. S. (2003). ‘The catchment areas of panoramic snapshots in outdoor scenes’, Journal of the Optical Society of America A, 20. P. 450–469.
.
На основе этих результатов Венеру и его коллегам удалось даже запрограммировать движущегося робота, в котором были воспроизведены компас на основе поляризованного солнечного света и система распознавания ориентиров, используемые муравьями. Эта машина, получившая игривое название «сахабот» (сокращение от «сахарского робота»), может выполнять те же самые маневры, что и настоящий муравей [110] Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R. (2000). ‘A mobile robot employing insect strategies for navigation’, Robot and Autonomous Systems, 30. P. 39–64.
. Кроме того, исследователи открыли множество других аспектов навигационного инструментария муравья, в том числе его способность использовать в качестве дополнительных подсказок при поисках цели направление ветра, вибрацию и запахи. При определении пройденного расстояния муравьи умеют даже учитывать волнистую форму поверхности, по которой они перемещаются. А по последним сведениям оказывается, что эти удивительные животные также способны ориентироваться, используя магнитное поле Земли [111] Fleischmann, P. N., Grob, R., Müller, V. L., Wehner, R., & Rössler, W. (2018). ‘The geomagnetic field is a compass cue in cataglyphis ant navigation’, Current Biology.
. Их талантам, кажется, нет конца.
Читать дальше