Высокоактивные РАО, в том числе отходы переработки ОЯТ, нуждаются в надежной изоляции на десятки и сотни тысяч лет. Отправка отходов в космос слишком дорога, опасна авариями при старте, захоронения в океане или в разломах земной коры чреваты непредсказуемыми последствиями. Первые годы или десятилетия их еще можно выдерживать в бассейнах «мокрых» наземных хранилищ, но затем с ними придется что-то делать. Например, перенести в более безопасное и долговременное сухое – и гарантировать его надежность на сотни и тысячи лет.
Захоронение радиоактивных отходов требует надёжного связывания соединений радиоактивных изотопов независимо от их дисперсности, водорастворимости, газо– и тепловыделения, изменения объёма со временем. Для этой цели широко применяется вплавление ядерных отходов в стекломассу.
Соответствующие соли и оксиды либо растворяются в стекле, включаясь в его химическую структуру, либо остаются в виде мелкодисперсных кристаллов, окружённых массой стекла («матрицей»). Блок из такого материала достаточно прочен, стабилен и химически инертен, чтобы предотвратить разнос радиоактивных веществ в окружающую среду с водой и воздухом. Блоки помещаются в хранилища, например, глубокие скважины в толще устойчивых и непроницаемых горных пород, где способны пролежать сотни лет до естественной потери радиоактивности. Этот же способ предлагается использовать и для консервации некоторых токсичных веществ.
В 1951 году было впервые предложено включать окислы продуктов деления в стекловидную матрицу, так как стекло, будучи нестехиометрическим соединением, при нагревании способно растворять, а при последующем охлаждении прочно удерживать сложную смесь продуктов деления. Получаемый продукт обладает высокой химической и радиационной стойкостью, является изотропным, непористым. Главный недостаток стекла – его термодинамическая нестойкость, которая проявляется в кристаллизации стекла («расстекловывание») под действием высокой температуры, обусловленной радиоактивным распадом. Явления расстекловывания ухудшают первоначальные свойства продукта, в частности, возрастает скорость его выщелачивания. Тем не менее, остеклование считают наиболее подходящим методом отверждения жидких радиоактивных отходов.
Перспективность использования стекла в качестве иммобилизирующей матрицы обусловлена:
– высокой способностью включать в свой состав элементы независимо от заряда и размера их атомов;
– стойкостью к радиационному повреждению благодаря тому, что их собственный беспорядок допускает большое число атомных перемещений;
– относительной легкостью и дешевизной изготовления, т. к. не требует сложного оборудования;
– отработанностью технологии производства, литья, формовки и отжига.
Стеклообразное состояние вещества – основная разновидность аморфного состояния, формирующегося при затвердевании переохлажденного расплава. Застывание переохлажденной жидкости в виде стекла происходит благодаря быстрому и непрерывному увеличению вязкости расплава при понижении температуры, что затрудняет структурные перестройки в нем, необходимые для энергетически более выгодной кристаллизации. Вязкость расплава, обусловленная межмолекулярными силами, определяет степень склонности конкретной жидкости к стеклообразованию: чем сильнее связанность структуры жидкости, тем легче из расплава образуется стекло. Условия охлаждения оказывают большое влияние на процессы стеклообразования и кристаллизации. Критическая скорость охлаждения данного расплава (минимальная скорость, при которой образуется стекло) зависит от вязкости жидкости, температуры и теплоты кристаллизации.
Силикатные стекла представляют собой наиболее изученный и распространенный класс оксидных стекол, применяемых для иммобилизации радиоактивных отходов. Основой силикатных стекол служит оксид – стеклообразователь – диоксид кремния SiO 2. Оксиды, способные находиться в стеклообразном состоянии, например, B 2O, P 2O 5, составляют вместе с кремнеземом основу сложных по составу стекол. Трехмерный каркас, хаотически составленный из тетраэдров SiO 4, структурного элемента кремнезема легко включает в свои пустоты оксиды, называемые модификаторами.
Тип связывания атомов ответственен за сложное поведение стекла, содержащего радиоактивные отходы, при его выщелачивании. Понятие аморфности предполагает отсутствие дальнего порядка в расположении тетраэдра SiO 4. Ранее полагали, что стеклообразное состояние – это непрерывная беспорядочная сетка, имеющая бесконечно большую элементарную ячейку с отсутствием периодичности и симметрии. Сейчас предпочитают модель кристаллоподобной упорядоченности.
Читать дальше
Конец ознакомительного отрывка
Купить книгу